Home
Class 12
MATHS
int (f(x) phi' (x) - f'(x) phi(x))/(f(x)...

`int (f(x) phi' (x) - f'(x) phi(x))/(f(x) . phi(x)) [log phi (x) - log f(x)] dx =`

A

`1/2 {log ((phi (x))/(f(x)))}^2`

B

`log(phi(x))/(f(x))`

C

`(phi(x))/(f(x)) "log" (phi(x))/(f(x))`

D

none

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int({f(x)phi'(x)-f'(x)phi(x)})/(f(x)phi(x)){ ln phi(x)-lnf(x)}dx is equal to

int[f(x).phi'(x)-f'(x).phi(x)]/[f(x).phi(x)]{logphi(x)-logf(x)}.dx is equal to

Statement 1:int({f(x)phi'(x)-f'(x)phi(x)})/(f(x)phi(x))-log f(x)dx=(1)/(2){(phi(x))/(f(x))}^(2)+c Statement 2:int(h(x))^(n)h'(x)dx=((h(x)^(n+1))/(n+1)+c

int(f(x)*g'(x)-f'(x)g(x))/(f(x)*g(x)){log g(x)-log f(x)}dx

int_( is )((f(x)g'(x)-f'(x)g(x))/(f(x)g(x)))*(log(g(x))-log(f(x))dx

The value of int(f(x)phi\'(x)+phi(x)f\'(x))/((f(x)*phi(x)+1)sqrt(phi(x)*f(x)-1))dx is (A) cos^-1sqrt(f(x)^2-phi(x)^2) (B) tan^-1[f(x)phi(x)] (C) sin^-1sqrt(f(x)/(phi(x)) (D) none of these

If phi(x)=int(phi(x))^(-2)dx and phi(1)=0 then phi(x) is

If f(0)=2, f'(x) =f(x), phi (x) = x+f(x) then int_(0)^(1) f(x) phi (x) dx is

int_(a)^(b)f(x)dx=phi(b)-phi(a)

int e^(x){f(x)-f'(x)}dx=phi(x), then int e^(x)f(x)dx is