Home
Class 12
MATHS
The value of int1^2 [f1 {f2 (x)}]^(-1) f...

The value of `int_1^2 [f_1 {f_2 (x)}]^(-1) f'_1 [f_2(x)] f'_2 (x) dx` where `f_2(1) = f_2(2)`, is equal to

A

0

B

1

C

2

D

none

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

The value of int_1^2 {f(g(x))}^(-1)f'(g(x))g'(x) dx , where g(1)=g(2), is equal to

If 2f (x +1) +f ((1)/( x +1))=2x, then f(2) is equal to

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to

int_(-1)^(2)f(x)dx " where " f(x) = |x+1| +|x|+ |x-1| is equal to

if int_(0)^(1)f(x)dx=1 and f(2x)=2f(x) then 3int_(1)^(2)f(x)dx is equal to

Let f : R to R be continuous function such that f (x) + f (x+1) = 2, for all x in R. If I _(1) int_(0) ^(8) f (x) dx and I _(2) = int _(-1) ^(3) f (x) dx, then the value of I _(2) +2 I _(2) is equal to "________"

If f(x-1)=f(x+1) , where f(x)=x^2-2x+3 , then: x=

The value of int_1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,where a >1, and [x] denotes the greatest integer not exceeding x, is (A) af(a)-{f(1)f(2)+.....+f([a])} (B) [a]f(a)-{f(1)+f(2)+......+f([a])} (C) [a]f(a)-{f(1)+f(2)+.......+fA} (D) af([a])-{f(1)+f(2)+......+fA}