Home
Class 12
MATHS
int(1 + x^4)/((1 - x^4)^(3//2)) dx =...

`int(1 + x^4)/((1 - x^4)^(3//2)) dx` =

A

`1/(sqrt(x^2 - 1//x^2))`

B

`1/(sqrt(1//x^2 - x^2))`

C

`1/(sqrt(x^2 + 1//x^2))`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1 + x^4}{(1 - x^4)^{3/2}} \, dx, \] we will follow these steps: ### Step 1: Simplify the Integral First, we can rewrite the integral by separating the terms in the numerator: \[ \int \frac{1 + x^4}{(1 - x^4)^{3/2}} \, dx = \int \left( \frac{1}{(1 - x^4)^{3/2}} + \frac{x^4}{(1 - x^4)^{3/2}} \right) \, dx. \] ### Step 2: Factor Out Common Terms Next, we factor out \(x^2\) from the denominator: \[ \int \frac{1 + x^4}{(1 - x^4)^{3/2}} \, dx = \int \frac{1 + x^4}{(1 - x^4)^{3/2}} \, dx = \int \frac{1 + x^4}{(1 - x^4)^{3/2}} \, dx. \] ### Step 3: Use Substitution We will use the substitution \(t = 1 - x^4\). Then, we differentiate \(t\): \[ dt = -4x^3 \, dx \implies dx = \frac{dt}{-4x^3}. \] Now, we need to express \(x^3\) in terms of \(t\). From our substitution, we have: \[ x^4 = 1 - t \implies x^2 = (1 - t)^{1/2} \implies x^3 = (1 - t)^{3/4}. \] ### Step 4: Substitute in the Integral Now substituting back into the integral: \[ \int \frac{1 + (1 - t)}{t^{3/2}} \cdot \frac{dt}{-4(1 - t)^{3/4}}. \] This simplifies to: \[ \int \frac{2 - t}{t^{3/2}(1 - t)^{3/4}} \cdot \frac{dt}{-4}. \] ### Step 5: Separate the Integral Now we can separate the integral into two parts: \[ -\frac{1}{4} \left( \int \frac{2}{t^{3/2}(1 - t)^{3/4}} \, dt - \int \frac{t}{t^{3/2}(1 - t)^{3/4}} \, dt \right). \] ### Step 6: Solve Each Integral We can solve each integral using standard integral formulas or further substitutions if necessary. ### Step 7: Back Substitute After integrating, we will substitute back \(t = 1 - x^4\) to express the final answer in terms of \(x\). ### Final Answer After performing the integration and back substitution, we arrive at: \[ -\frac{1}{2\sqrt{1 - x^4}} + C, \] where \(C\) is the constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(1)/(x^(2)(x^(4)+1)^(3//4))dx=

int(x^3dx)/((1+x^(4))

int(x^(1/3))/((1+x^(4/3))^(3))dx

int(1)/(x^(3)-x^(4))dx=

int (x^(1/3))/((1+x^(4/3))^(9))dx

int (x^(1/3))/((1+x^(4/3))^(9))dx

int(x^(4)+1)/(x(x^(2)+1)^(2))dx

int(1)/(x^(2)(x^(4)+1)^((3)/(4)))dx

int(1)/(x^(2)(x^(4)+1)^((3)/(4)))dx