Home
Class 12
MATHS
if int (x^(3//2))/(x^(5//2) + x^4) dx = ...

if `int (x^(3//2))/(x^(5//2) + x^4) dx = a "log" (x^b)/(1 + x^b) + C` then `(a,b)` is equal to

A

`(3/2, 2/3)`

B

`(2/3 , 3/2)`

C

`(3/2,1)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x^{3/2}}{x^{5/2} + x^4} \, dx, \] we will simplify the integrand and then perform the integration step by step. ### Step 1: Simplify the integrand First, we can factor out \(x^{5/2}\) from the denominator: \[ x^{5/2} + x^4 = x^{5/2}(1 + x^{3/2}). \] Thus, we can rewrite the integral as: \[ \int \frac{x^{3/2}}{x^{5/2}(1 + x^{3/2})} \, dx = \int \frac{1}{x^{5/2}} \cdot \frac{x^{3/2}}{1 + x^{3/2}} \, dx. \] This simplifies to: \[ \int \frac{1}{x} \cdot \frac{1}{1 + x^{3/2}} \, dx. \] ### Step 2: Rewrite the integral Now we have: \[ \int \frac{1}{x(1 + x^{3/2})} \, dx. \] ### Step 3: Use partial fraction decomposition We can express the integrand using partial fractions: \[ \frac{1}{x(1 + x^{3/2})} = \frac{A}{x} + \frac{B}{1 + x^{3/2}}. \] Multiplying through by the denominator \(x(1 + x^{3/2})\) gives: \[ 1 = A(1 + x^{3/2}) + Bx. \] ### Step 4: Solve for coefficients A and B To find \(A\) and \(B\), we can substitute convenient values for \(x\): 1. Let \(x = 0\): \[ 1 = A(1 + 0) \implies A = 1. \] 2. Let \(x = 1\): \[ 1 = 1(1 + 1) + B(1) \implies 1 = 2 + B \implies B = -1. \] Thus, we have: \[ \frac{1}{x(1 + x^{3/2})} = \frac{1}{x} - \frac{1}{1 + x^{3/2}}. \] ### Step 5: Integrate each term Now we can integrate each term separately: 1. For \(\int \frac{1}{x} \, dx\): \[ \int \frac{1}{x} \, dx = \log |x|. \] 2. For \(\int \frac{1}{1 + x^{3/2}} \, dx\), we can use substitution. Let \(u = 1 + x^{3/2}\), then \(du = \frac{3}{2} x^{1/2} \, dx\) or \(dx = \frac{2}{3} u^{-1/2} \, du\). Thus, the integral becomes: \[ -\int \frac{1}{u} \cdot \frac{2}{3} u^{-1/2} \, du = -\frac{2}{3} \log |u| = -\frac{2}{3} \log |1 + x^{3/2}|. \] ### Step 6: Combine results Combining both integrals, we have: \[ \int \frac{x^{3/2}}{x^{5/2} + x^4} \, dx = \log |x| - \frac{2}{3} \log |1 + x^{3/2}| + C. \] ### Step 7: Express in the required form We can rewrite this as: \[ \log |x| - \log |(1 + x^{3/2})^{2/3}| + C = \log \left(\frac{x}{(1 + x^{3/2})^{2/3}}\right) + C. \] ### Step 8: Compare with the given form We need to express it in the form: \[ a \log \left(\frac{x^b}{1 + x^b}\right) + C. \] From our integration, we can see that: - \(a = 2/3\) - \(b = 3/2\) Thus, the values of \(a\) and \(b\) are: \[ (a, b) = \left(\frac{2}{3}, \frac{3}{2}\right). \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int_(a)^(b)(log x)/(x^(2))dx

int x ^(x)((ln x )^(2) -1/x) dx is equal to:

int(x^(2)(1-ln x))/(ln^(4)x-x^(4))dx equals

If int(1+x+x^(2))/(x^(2)+x^(3))dx=(a)/(x)+b.log(x+1)+c, then

If int_(0)^(1)((1-x^(2))/(1+x^(2)+x^(4)))dx=a ln b, then

If int (x^4 + 1)/(x(x^2+1)^2)\ dx = A ln |x| +B/(1+x^2)+C, then A+B equals to :

If int(ln((x-1)/(x+1)))/(x^(2)-1)dx=(1)/(a)*(ln|(x-1)/(x+1)|)^(b)+c , then a^(2)-b^(2)-ab is equal to __________.

If int_(0)^(1)(x+4)/(x^(2)+5)dx = a log ((6)/(5))+b tan^(-1)((1)/(sqrt(5))) , then (a, b)-=

If int(1)/(a^(4)-x^(4))dx=A tan^(-1)((x)/(a))+B log|(a+x)/(a-x)|+C ,then (A,B)=