Home
Class 12
MATHS
Let f(x) = "min" [x + 1, sqrt(1 - x)], t...

Let `f(x) = "min" [x + 1, sqrt(1 - x)]`, then `int_(-1)^(1) f(x) dx` is

A

`1/6`

B

`5/6`

C

`7/6`

D

`11/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-1}^{1} f(x) \, dx \) where \( f(x) = \min[x + 1, \sqrt{1 - x}] \), we need to analyze the function \( f(x) \) over the interval \([-1, 1]\). ### Step 1: Analyze the function \( f(x) \) We need to determine where \( x + 1 \) is less than or equal to \( \sqrt{1 - x} \) and where it is greater. 1. Set the two expressions equal to find the points of intersection: \[ x + 1 = \sqrt{1 - x} \] 2. Square both sides: \[ (x + 1)^2 = 1 - x \] \[ x^2 + 2x + 1 = 1 - x \] \[ x^2 + 3x = 0 \] \[ x(x + 3) = 0 \] This gives us \( x = 0 \) and \( x = -3 \). However, since we are only interested in the interval \([-1, 1]\), we will only consider \( x = 0 \). ### Step 2: Determine the behavior of \( f(x) \) - For \( x \in [-1, 0] \): - At \( x = -1 \): \( f(-1) = \min[-1 + 1, \sqrt{1 - (-1)}] = \min[0, \sqrt{2}] = 0 \) - At \( x = 0 \): \( f(0) = \min[0 + 1, \sqrt{1 - 0}] = \min[1, 1] = 1 \) Since \( x + 1 \) increases from 0 to 1 and \( \sqrt{1 - x} \) decreases from \( \sqrt{2} \) to 1, we can conclude that: \[ f(x) = x + 1 \quad \text{for } x \in [-1, 0] \] - For \( x \in [0, 1] \): - At \( x = 0 \): \( f(0) = 1 \) - At \( x = 1 \): \( f(1) = \min[1 + 1, \sqrt{1 - 1}] = \min[2, 0] = 0 \) Here, \( \sqrt{1 - x} \) decreases from 1 to 0 while \( x + 1 \) increases from 1 to 2. Thus: \[ f(x) = \sqrt{1 - x} \quad \text{for } x \in [0, 1] \] ### Step 3: Set up the integral Now we can break the integral into two parts: \[ \int_{-1}^{1} f(x) \, dx = \int_{-1}^{0} (x + 1) \, dx + \int_{0}^{1} \sqrt{1 - x} \, dx \] ### Step 4: Calculate the first integral Calculate \( \int_{-1}^{0} (x + 1) \, dx \): \[ \int (x + 1) \, dx = \frac{x^2}{2} + x \] Evaluating from \(-1\) to \(0\): \[ \left[ \frac{0^2}{2} + 0 \right] - \left[ \frac{(-1)^2}{2} + (-1) \right] = 0 - \left[ \frac{1}{2} - 1 \right] = 0 - \left[ -\frac{1}{2} \right] = \frac{1}{2} \] ### Step 5: Calculate the second integral Calculate \( \int_{0}^{1} \sqrt{1 - x} \, dx \): Using the substitution \( u = 1 - x \), \( du = -dx \): \[ \int_{0}^{1} \sqrt{1 - x} \, dx = \int_{1}^{0} \sqrt{u} (-du) = \int_{0}^{1} u^{1/2} \, du \] \[ = \left[ \frac{u^{3/2}}{3/2} \right]_{0}^{1} = \left[ \frac{2}{3} u^{3/2} \right]_{0}^{1} = \frac{2}{3} (1) - 0 = \frac{2}{3} \] ### Step 6: Combine the results Now, combine both integrals: \[ \int_{-1}^{1} f(x) \, dx = \frac{1}{2} + \frac{2}{3} \] Finding a common denominator (which is 6): \[ = \frac{3}{6} + \frac{4}{6} = \frac{7}{6} \] ### Final Answer Thus, the value of the integral \( \int_{-1}^{1} f(x) \, dx \) is: \[ \boxed{\frac{7}{6}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = {x} , the fractional part of x then int_(-1)^(1) f(x) dx is equal to

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

f(x) = min{2 sinx, 1- cos x, 1} then int_0^(pi)f(x) dx is equal to

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to

If f(x)= Min {|x-1|,|x|,|x+1|} "then" int_(-1)^(1)f(x)dx eqals

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to

Let f(x)=x-[x], for every real number x, where [x] is integral part of x .Then int_(-1)^(1)f(x)dx is

If f(x)=min_(1){|x-1|,|x|,|x+1|, then the value of int_(-1)^(1)f(x)dx is equal to

int_(n)^(n+1)f(x)dx=n^(2)+n then int_(-1)^(1)f(x)dx=