Home
Class 12
MATHS
If int f(x) sin x cos x dx = 1/(2(b^2 - ...

If `int f(x) sin x cos x dx = 1/(2(b^2 - a^2)) log f(x) + c` then `f(x) =`

A

`1/(a^2 sin^2 x + b^2 cos^2 x)`

B

`1/(a sin x + b sin x)`

C

`1/(a^2 cos^2 x + b^2 sin^2 x)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the question, we start with the integral equation: \[ \int f(x) \sin x \cos x \, dx = \frac{1}{2(b^2 - a^2)} \log f(x) + c \] ### Step 1: Differentiate both sides with respect to \(x\) We differentiate the left-hand side using the product rule and the right-hand side using the chain rule: \[ \frac{d}{dx} \left( \int f(x) \sin x \cos x \, dx \right) = f(x) \sin x \cos x \] For the right-hand side, we have: \[ \frac{d}{dx} \left( \frac{1}{2(b^2 - a^2)} \log f(x) + c \right) = \frac{1}{2(b^2 - a^2)} \cdot \frac{1}{f(x)} \cdot f'(x) \] ### Step 2: Set the derivatives equal to each other Equating both sides gives us: \[ f(x) \sin x \cos x = \frac{1}{2(b^2 - a^2)} \cdot \frac{1}{f(x)} \cdot f'(x) \] ### Step 3: Multiply both sides by \(f(x)\) To eliminate the fraction, we multiply both sides by \(f(x)\): \[ f(x)^2 \sin x \cos x = \frac{1}{2(b^2 - a^2)} f'(x) \] ### Step 4: Rearrange the equation Rearranging gives us: \[ f'(x) = 2(b^2 - a^2) f(x)^2 \sin x \cos x \] ### Step 5: Separate variables We can separate the variables: \[ \frac{f'(x)}{f(x)^2} = 2(b^2 - a^2) \sin x \cos x \] ### Step 6: Integrate both sides Integrating both sides: \[ \int \frac{f'(x)}{f(x)^2} \, dx = \int 2(b^2 - a^2) \sin x \cos x \, dx \] The left side integrates to: \[ -\frac{1}{f(x)} \] The right side can be simplified using the identity \(\sin x \cos x = \frac{1}{2} \sin(2x)\): \[ \int \sin(2x) \, dx = -\frac{1}{2} \cos(2x) \] Thus, we have: \[ -\frac{1}{f(x)} = (b^2 - a^2)(-\frac{1}{2} \cos(2x)) + C \] ### Step 7: Solve for \(f(x)\) Rearranging gives: \[ \frac{1}{f(x)} = \frac{(b^2 - a^2)}{2} \cos(2x) - C \] Taking the reciprocal: \[ f(x) = \frac{1}{\frac{(b^2 - a^2)}{2} \cos(2x) - C} \] ### Final Result Thus, the function \(f(x)\) is: \[ f(x) = \frac{2}{(b^2 - a^2) \cos(2x) - 2C} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

If intf (x)sinx cosx dx=(1)/(2(a^(2)-b^(2)))log|f(x)|+C ,then f (x)=

If f(x)sin x cos xdx=(1)/(2(b^(2)-a^(2)))ln f(x)+c, then f(x) is equal to (1)/(a^(2)sin^(2)x+b^(2)cos^(2)x)(b)(1)/(a^(2)sin^(2)x-b^(2)cos^(2)x+b^(2)cos^(2)x+b^(2)cos^(2)x)(d)(1)/(a^(2)cos^(2)x-b^(2)cos^(2)x)

int_( then )^( If )f(x)sin x cos xdx=(1)/(2(b^(2)-a^(2)))log f(x)+C

If int f(x)cos xdx=(1)/(2)f^(2)(x)+C" ,then "f(x)" can be "P sin x .Find the value of "P

If int(1)/(f(x))dx=log[f(x)]^(2)+c , then f(x)=

if int e^(sin x)(x cos^(3)x-sin x)/(cos^(2)x)dx and f(0)=1 then f(pi)= is