Home
Class 12
MATHS
int0^1 (x)/((1 - x)^(3//4)) dx =...

`int_0^1 (x)/((1 - x)^(3//4)) dx` =

A

`12//5`

B

`16//5`

C

`-16//5`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^1 \frac{x}{(1 - x)^{3/4}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We can rewrite the integral as: \[ \int_0^1 \frac{x}{(1 - x)^{3/4}} \, dx = \int_0^1 x (1 - x)^{-3/4} \, dx \] ### Step 2: Use Integration by Parts We can use integration by parts, where we let: - \( u = x \) (thus \( du = dx \)) - \( dv = (1 - x)^{-3/4} \, dx \) Now we need to find \( v \) by integrating \( dv \): \[ v = \int (1 - x)^{-3/4} \, dx \] ### Step 3: Integrate \( dv \) To integrate \( (1 - x)^{-3/4} \), we can use the power rule: \[ \int (1 - x)^{-3/4} \, dx = \frac{(1 - x)^{1/4}}{1/4} = 4(1 - x)^{1/4} + C \] ### Step 4: Apply Integration by Parts Formula Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int_0^1 x (1 - x)^{-3/4} \, dx = \left[ x \cdot 4(1 - x)^{1/4} \right]_0^1 - \int_0^1 4(1 - x)^{1/4} \, dx \] ### Step 5: Evaluate the Boundary Terms Now we evaluate the boundary term: \[ \left[ x \cdot 4(1 - x)^{1/4} \right]_0^1 = 4 \cdot 1 \cdot (1 - 1)^{1/4} - 4 \cdot 0 \cdot (1 - 0)^{1/4} = 0 - 0 = 0 \] ### Step 6: Evaluate the Remaining Integral Now we need to evaluate: \[ - \int_0^1 4(1 - x)^{1/4} \, dx \] Using the power rule again: \[ \int (1 - x)^{1/4} \, dx = \frac{(1 - x)^{5/4}}{5/4} = \frac{4}{5}(1 - x)^{5/4} + C \] Thus: \[ \int_0^1 4(1 - x)^{1/4} \, dx = 4 \cdot \left[ \frac{4}{5}(1 - x)^{5/4} \right]_0^1 = 4 \cdot \left( 0 - \frac{4}{5} \right) = -\frac{16}{5} \] ### Step 7: Combine Results Putting it all together: \[ \int_0^1 x (1 - x)^{-3/4} \, dx = 0 - \left( -\frac{16}{5} \right) = \frac{16}{5} \] ### Final Answer Thus, the value of the integral is: \[ \int_0^1 \frac{x}{(1 - x)^{3/4}} \, dx = \frac{16}{5} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(oo) (x)/(1-x)^(3//4)dx=

int_0^1 x^2(1-x)^(3/2) dx=

Let I_1=int_0^1 (dx)/(1+x^(1/3)) and I_2=int_0^1 (dx)/(1+x^(1/4)) then 4I_1+3I_2=

The value of int_0^1 (x^(3))/(1+x^(8))dx is

int_0^1 (x e^x +sin((pix)/4)) dx

int_0^1 log((x)/(1-x))dx=0

int_0^1 (x+x^2)dx