To solve the integral \( \int_0^1 \frac{x}{(1 - x)^{3/4}} \, dx \), we will follow these steps:
### Step 1: Rewrite the Integral
We can rewrite the integral as:
\[
\int_0^1 \frac{x}{(1 - x)^{3/4}} \, dx = \int_0^1 x (1 - x)^{-3/4} \, dx
\]
### Step 2: Use Integration by Parts
We can use integration by parts, where we let:
- \( u = x \) (thus \( du = dx \))
- \( dv = (1 - x)^{-3/4} \, dx \)
Now we need to find \( v \) by integrating \( dv \):
\[
v = \int (1 - x)^{-3/4} \, dx
\]
### Step 3: Integrate \( dv \)
To integrate \( (1 - x)^{-3/4} \), we can use the power rule:
\[
\int (1 - x)^{-3/4} \, dx = \frac{(1 - x)^{1/4}}{1/4} = 4(1 - x)^{1/4} + C
\]
### Step 4: Apply Integration by Parts Formula
Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \):
\[
\int_0^1 x (1 - x)^{-3/4} \, dx = \left[ x \cdot 4(1 - x)^{1/4} \right]_0^1 - \int_0^1 4(1 - x)^{1/4} \, dx
\]
### Step 5: Evaluate the Boundary Terms
Now we evaluate the boundary term:
\[
\left[ x \cdot 4(1 - x)^{1/4} \right]_0^1 = 4 \cdot 1 \cdot (1 - 1)^{1/4} - 4 \cdot 0 \cdot (1 - 0)^{1/4} = 0 - 0 = 0
\]
### Step 6: Evaluate the Remaining Integral
Now we need to evaluate:
\[
- \int_0^1 4(1 - x)^{1/4} \, dx
\]
Using the power rule again:
\[
\int (1 - x)^{1/4} \, dx = \frac{(1 - x)^{5/4}}{5/4} = \frac{4}{5}(1 - x)^{5/4} + C
\]
Thus:
\[
\int_0^1 4(1 - x)^{1/4} \, dx = 4 \cdot \left[ \frac{4}{5}(1 - x)^{5/4} \right]_0^1 = 4 \cdot \left( 0 - \frac{4}{5} \right) = -\frac{16}{5}
\]
### Step 7: Combine Results
Putting it all together:
\[
\int_0^1 x (1 - x)^{-3/4} \, dx = 0 - \left( -\frac{16}{5} \right) = \frac{16}{5}
\]
### Final Answer
Thus, the value of the integral is:
\[
\int_0^1 \frac{x}{(1 - x)^{3/4}} \, dx = \frac{16}{5}
\]