Home
Class 12
MATHS
int (dx)/((x + alpha)^(8//7) (x - beta)^...

`int (dx)/((x + alpha)^(8//7) (x - beta)^(6//7)) = `

A

`6/(alpha + beta)((x - beta)/(x + alpha))^(1//6)`

B

`6/(alpha + beta) ((x + alpha)/(x - beta))^(1//6)`

C

`7/(alpha + beta) ((x + alpha)/(x - beta))^(1//7)`

D

`7/(alpha + beta) ((x - beta)/(x + alpha))^(1//7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{dx}{(x + \alpha)^{\frac{8}{7}} (x - \beta)^{\frac{6}{7}}} \] we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form. We can express the integral as: \[ \int \frac{1}{(x + \alpha)^{\frac{8}{7}} (x - \beta)^{\frac{6}{7}}} \, dx \] ### Step 2: Break Down the Powers Next, we can separate the powers in the denominator: \[ = \int \frac{1}{(x + \alpha)^{\frac{8}{7}}} \cdot \frac{1}{(x - \beta)^{\frac{6}{7}}} \, dx \] ### Step 3: Use Substitution We will use the substitution: \[ t = \frac{x - \beta}{x + \alpha} \] Now we need to find \(dx\) in terms of \(dt\). First, we differentiate \(t\): \[ dt = \frac{(x + \alpha)(1) - (x - \beta)(1)}{(x + \alpha)^2} \, dx = \frac{(x + \alpha) - (x - \beta)}{(x + \alpha)^2} \, dx \] This simplifies to: \[ dt = \frac{\beta + \alpha}{(x + \alpha)^2} \, dx \] Thus, \[ dx = \frac{(x + \alpha)^2}{\beta + \alpha} \, dt \] ### Step 4: Substitute Back into the Integral Now substitute \(dx\) and \(t\) back into the integral: \[ \int \frac{(x + \alpha)^2}{\beta + \alpha} \cdot \frac{1}{(x + \alpha)^{\frac{8}{7}}} \cdot \frac{1}{(x - \beta)^{\frac{6}{7}}} \, dt \] This simplifies to: \[ \frac{1}{\beta + \alpha} \int \frac{(x + \alpha)^{2 - \frac{8}{7}}}{(x - \beta)^{\frac{6}{7}}} \, dt \] ### Step 5: Simplify the Powers Now we simplify the powers: \[ = \frac{1}{\beta + \alpha} \int \frac{(x + \alpha)^{\frac{6}{7}}}{(x - \beta)^{\frac{6}{7}}} \, dt \] ### Step 6: Perform the Integral Now we can perform the integral: \[ = \frac{1}{\beta + \alpha} \cdot \frac{7}{1} \cdot t^{\frac{1}{7}} + C \] ### Step 7: Substitute Back for \(t\) Finally, substitute back for \(t\): \[ = \frac{7}{\beta + \alpha} \left(\frac{x - \beta}{x + \alpha}\right)^{\frac{1}{7}} + C \] ### Final Answer Thus, the final result of the integral is: \[ \frac{7}{\beta + \alpha} \left(\frac{x - \beta}{x + \alpha}\right)^{\frac{1}{7}} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(1)/((x+alpha)^((8)/(7))(x-beta)^((6)/(7)))dx

int (dx) / (sin (x + alpha) cos (x + beta) =)

Find the integration int dx /((x - 3)^(6/7)(x + 4)^(8/7) =

int(dx)/((x+3)^(8//7)(x-2)^(6//7)) is equal to

int(dx)/((x-alpha)sqrt((x-alpha)(x-beta)))

The integral int(dx)/((x+4)^(8//7)(x-3)^(6//7)) is equal to : (where C is constant of integration)

int(dx)/((x+a)^((8)/(7))(x-b)^((6)/(7)))=

f'(dx)/((x+6)^(8//7)(x-8)^(6//7)) is equal to

int (dx) / (sqrt (sin (x + alpha) cos ^ (3) (x-beta)))

int(dx)/(sin(x-alpha)sin(x-beta))