Home
Class 12
MATHS
int(x dx)/((x^2 + 1)^(4//5)(x^2 + 2)^(6/...

`int(x dx)/((x^2 + 1)^(4//5)(x^2 + 2)^(6//5))` =

A

`2/5 ((x^2 + 2)/(x^2 + 1))^(1//5)`

B

`5/2 ((x^2 + 2)/(x^2 + 1))^(-1//5)`

C

`5/2 ((x^2 + 1)/(x^2 + 2))^(1//5)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{x \, dx}{(x^2 + 1)^{\frac{4}{5}} (x^2 + 2)^{\frac{6}{5}}} \] we can follow these steps: ### Step 1: Rewrite the Integral We can separate the powers in the denominator: \[ I = \int \frac{x \, dx}{(x^2 + 2)^{\frac{6}{5}} (x^2 + 1)^{\frac{4}{5}}} = \int \frac{x \, dx}{(x^2 + 2)^{\frac{4}{5}} (x^2 + 1)^{\frac{4}{5}} (x^2 + 2)^{\frac{2}{5}}} \] ### Step 2: Substitution Let \[ t = \frac{x^2 + 1}{x^2 + 2} \] Then, we differentiate \(t\): \[ dt = \frac{(2x)(x^2 + 2) - (2x)(x^2 + 1)}{(x^2 + 2)^2} \, dx = \frac{2x}{(x^2 + 2)^2} \, dx \] Thus, \[ dx = \frac{(x^2 + 2)^2}{2x} \, dt \] ### Step 3: Substitute in the Integral Substituting \(t\) and \(dx\) into the integral: \[ I = \int \frac{x \cdot \frac{(x^2 + 2)^2}{2x} \, dt}{(x^2 + 2)^{\frac{6}{5}} (x^2 + 1)^{\frac{4}{5}}} \] This simplifies to: \[ I = \frac{1}{2} \int \frac{(x^2 + 2)^{2 - \frac{6}{5}}}{(x^2 + 1)^{\frac{4}{5}}} \, dt \] ### Step 4: Simplify the Integral Now we simplify the powers: \[ 2 - \frac{6}{5} = \frac{10}{5} - \frac{6}{5} = \frac{4}{5} \] Thus, the integral becomes: \[ I = \frac{1}{2} \int t^{\frac{4}{5}} \, dt \] ### Step 5: Integrate Now we can integrate: \[ I = \frac{1}{2} \cdot \frac{t^{\frac{4}{5} + 1}}{\frac{4}{5} + 1} + C = \frac{1}{2} \cdot \frac{t^{\frac{9}{5}}}{\frac{9}{5}} + C = \frac{5}{18} t^{\frac{9}{5}} + C \] ### Step 6: Substitute Back Substituting back for \(t\): \[ t = \frac{x^2 + 1}{x^2 + 2} \] Thus, we have: \[ I = \frac{5}{18} \left(\frac{x^2 + 1}{x^2 + 2}\right)^{\frac{9}{5}} + C \] ### Final Answer The final answer is: \[ \int \frac{x \, dx}{(x^2 + 1)^{\frac{4}{5}} (x^2 + 2)^{\frac{6}{5}}} = \frac{5}{18} \left(\frac{x^2 + 1}{x^2 + 2}\right)^{\frac{9}{5}} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int (dx)/((4x+5)^2+1)=

int(x)/((x^(2)+1)^((4)/(5))(x^(2)+2)^((6)/(5)))dx=

int(dx)/(x^(2)-4x+5)

int(dx)/(x^2+4x-5)=

int(2x^4+5)/(x^2+1)dx

int(x)/((1+x^(2))^(5))dx

int(5x+6)/((x+1)^(2))dx

int(dx)/((x+1)^((6)/(5))(x-3)^((4)/(5)))=

int(x^(5))/(x^(2)+1)dx

int(dx)/((x^(2)+5x+6)sqrt(x+1))