Home
Class 12
MATHS
int (cos sqrt(x))/(sqrt(x)) dx =...

`int (cos sqrt(x))/(sqrt(x)) dx` =

A

`2 cos sqrt(x)`

B

`sqrt{(cos x)//x}`

C

`sin sqrt(x)`

D

`2sin sqrt(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\cos(\sqrt{x})}{\sqrt{x}} \, dx \), we will use the substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \] Differentiating both sides with respect to \( x \): \[ dx = 2t \, dt \] ### Step 2: Rewrite the integral Now, we need to express \( \sqrt{x} \) and \( dx \) in terms of \( t \): \[ \sqrt{x} = t \quad \text{and} \quad dx = 2t \, dt \] Substituting these into the integral gives: \[ \int \frac{\cos(\sqrt{x})}{\sqrt{x}} \, dx = \int \frac{\cos(t)}{t} \cdot (2t \, dt) \] This simplifies to: \[ \int 2 \cos(t) \, dt \] ### Step 3: Integrate Now we can integrate: \[ \int 2 \cos(t) \, dt = 2 \sin(t) + C \] ### Step 4: Substitute back Now we substitute back \( t = \sqrt{x} \): \[ 2 \sin(t) + C = 2 \sin(\sqrt{x}) + C \] ### Final Answer Thus, the integral is: \[ \int \frac{\cos(\sqrt{x})}{\sqrt{x}} \, dx = 2 \sin(\sqrt{x}) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int cos sqrt(x)dx

int cos sqrt(x)dx

int cos sqrt(x)dx=

int (sqrt(x)-(1)/(sqrt(x)))dx

int(sqrt(x))/(sqrt(x)+2)dx

int(a^(sqrt(x)))/(sqrt(x))dx

int(k^(sqrt(x)))/(sqrt(x))dx

int(a^(sqrt(x)))/(sqrt(x))dx

int(sqrt(x))/(a sqrt(x)+b)dx

int(e^(sqrt(x)))/(sqrt(x))dx