Home
Class 12
MATHS
int0^(pi^2//4)("sin" sqrt(x))/(sqrtx) dx...

`int_0^(pi^2//4)("sin" sqrt(x))/(sqrtx) dx`

A

`2`

B

`1`

C

`pi/4`

D

`(pi^2)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^{\frac{\pi^2}{4}} \frac{\sin(\sqrt{x})}{\sqrt{x}} \, dx \), we will use the substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \quad \text{and} \quad dx = 2t \, dt \] ### Step 2: Change the limits of integration When \( x = 0 \): \[ t = \sqrt{0} = 0 \] When \( x = \frac{\pi^2}{4} \): \[ t = \sqrt{\frac{\pi^2}{4}} = \frac{\pi}{2} \] ### Step 3: Rewrite the integral Now, substituting \( t \) into the integral, we get: \[ \int_0^{\frac{\pi^2}{4}} \frac{\sin(\sqrt{x})}{\sqrt{x}} \, dx = \int_0^{\frac{\pi}{2}} \frac{\sin(t)}{t} (2t \, dt) \] This simplifies to: \[ = 2 \int_0^{\frac{\pi}{2}} \sin(t) \, dt \] ### Step 4: Integrate The integral of \( \sin(t) \) is: \[ \int \sin(t) \, dt = -\cos(t) \] Thus, \[ 2 \int_0^{\frac{\pi}{2}} \sin(t) \, dt = 2 \left[-\cos(t)\right]_0^{\frac{\pi}{2}} \] ### Step 5: Evaluate the limits Now, we evaluate the limits: \[ = 2 \left[-\cos\left(\frac{\pi}{2}\right) + \cos(0)\right] \] Since \( \cos\left(\frac{\pi}{2}\right) = 0 \) and \( \cos(0) = 1 \), we have: \[ = 2 \left[-0 + 1\right] = 2 \times 1 = 2 \] ### Final Answer Thus, the value of the integral is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int_(pi^(2)//16)^(pi^(2)//4)(sin sqrt(x))/(sqrt(x))dx=

Evaluate the following definite integrals: int_0^(pi//4)(sqrt(1-sin2x))/(sinx+cosx)dx

int_(0)^(pi//2) sqrt(sin x)/(sqrt(sin x ) + sqrt( cos x)) dx =

Prove that : int_(0)^(pi//2) (sqrt(cos x))/(sqrt(sin x+ sqrt(cos x)))dx=(pi)/(4)

int_0^(pi/2) sin x dx

int_(0)^(pi^(2)//4) sin sqrt(x)dx equals to

int_(0)^((pi)/(4))sin^(-1)sqrt((x)/(a+x))dx

int_(0)^((pi)/(4))sin^(-1)sqrt((x)/(a+x))dx