Home
Class 12
MATHS
int2^4 (sqrt((x^2 - 4))/(4)) dx =...

`int_2^4 (sqrt((x^2 - 4))/(4)) dx = `

A

`2(3sqrt(3) - pi)//3`

B

`pi`

C

`2(3sqrt(3) - pi)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_2^4 \frac{\sqrt{x^2 - 4}}{4} \, dx \), we can follow these steps: ### Step 1: Factor out the constant Since \( \frac{1}{4} \) is a constant, we can factor it out of the integral: \[ \int_2^4 \frac{\sqrt{x^2 - 4}}{4} \, dx = \frac{1}{4} \int_2^4 \sqrt{x^2 - 4} \, dx \] **Hint:** Remember that constants can be factored out of integrals. ### Step 2: Use the integration formula We will use the formula for the integral of the form \( \int \sqrt{x^2 - a^2} \, dx \): \[ \int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} + \frac{a^2}{2} \log \left( x + \sqrt{x^2 - a^2} \right) + C \] In our case, \( a^2 = 4 \) so \( a = 2 \). ### Step 3: Apply the formula Now we apply the formula: \[ \int \sqrt{x^2 - 4} \, dx = \frac{x}{2} \sqrt{x^2 - 4} + \frac{4}{2} \log \left( x + \sqrt{x^2 - 4} \right) + C \] This simplifies to: \[ \int \sqrt{x^2 - 4} \, dx = \frac{x}{2} \sqrt{x^2 - 4} + 2 \log \left( x + \sqrt{x^2 - 4} \right) + C \] ### Step 4: Evaluate the definite integral Now we need to evaluate this from 2 to 4: \[ \frac{1}{4} \left[ \left( \frac{x}{2} \sqrt{x^2 - 4} + 2 \log \left( x + \sqrt{x^2 - 4} \right) \right) \bigg|_2^4 \right] \] ### Step 5: Calculate the upper limit (x = 4) Substituting \( x = 4 \): \[ \frac{4}{2} \sqrt{4^2 - 4} + 2 \log \left( 4 + \sqrt{4^2 - 4} \right) = 2 \sqrt{12} + 2 \log \left( 4 + \sqrt{12} \right) \] This simplifies to: \[ 2 \sqrt{12} + 2 \log \left( 4 + 2\sqrt{3} \right) \] ### Step 6: Calculate the lower limit (x = 2) Substituting \( x = 2 \): \[ \frac{2}{2} \sqrt{2^2 - 4} + 2 \log \left( 2 + \sqrt{2^2 - 4} \right) = 0 + 2 \log(2) \] ### Step 7: Combine the results Now we combine the results from the upper and lower limits: \[ \frac{1}{4} \left[ \left( 2\sqrt{12} + 2 \log(4 + 2\sqrt{3}) \right) - 2 \log(2) \right] \] This simplifies to: \[ \frac{1}{4} \left( 2\sqrt{12} + 2 \log(4 + 2\sqrt{3}) - 2 \log(2) \right) \] Factoring out the 2 gives: \[ \frac{1}{2} \left( \sqrt{12} + \log \left( \frac{4 + 2\sqrt{3}}{2} \right) \right) \] ### Final Result Thus, the final result of the integral is: \[ \frac{1}{2} \left( \sqrt{12} + \log(2 + \sqrt{3}) \right) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx is

int_3^4 (dx)/sqrt(x^2+4)

Evaluate :int_(2)^(4)(sqrt(x^(2)-4))/(x^(4))dx

int_(-4)^(-2)(sqrt(x^(2)-4))/(4)dx

int sqrt((x^(2)-4x+2))dx

int sqrt (x^2+4) dx

int(dx)/(sqrt(9x^(2)-4))

"int(sqrt(a^(2)-x^(2)))/(x^(4))dx

int_(2)^(4)sqrt(x)dx

int sqrt(4x^(2)-9)dx