Home
Class 12
MATHS
int(sqrt(x))/(sqrt((a^3 - x^3))) dx =...

`int(sqrt(x))/(sqrt((a^3 - x^3))) dx ` =

A

`2/3 (x//a)^(3//2)`

B

`2/3 "sin"^(-1) (x//a)^(3//2)`

C

`2/3 cos^(-1)(x//a)^(3//2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx\), we can follow these steps: ### Step 1: Simplify the Integral We start with the integral: \[ \int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx \] We can factor out \(a^{3/2}\) from the denominator: \[ = \int \frac{\sqrt{x}}{\sqrt{a^3(1 - \frac{x^3}{a^3})}} \, dx = \int \frac{\sqrt{x}}{a^{3/2} \sqrt{1 - \frac{x^3}{a^3}}} \, dx \] This simplifies to: \[ = \frac{1}{a^{3/2}} \int \frac{\sqrt{x}}{\sqrt{1 - \frac{x^3}{a^3}}} \, dx \] ### Step 2: Substitute \(t = \left(\frac{x}{a}\right)^{3/2}\) Let \(t = \left(\frac{x}{a}\right)^{3/2}\). Then, we differentiate: \[ x = a \cdot t^{2/3} \quad \Rightarrow \quad dx = a \cdot \frac{2}{3} t^{-1/3} dt \] Now, substitute \(x\) and \(dx\) into the integral: \[ \int \frac{\sqrt{a t^{2/3}}}{\sqrt{1 - t}} \cdot a \cdot \frac{2}{3} t^{-1/3} dt = \frac{2a^{3/2}}{3} \int \frac{t^{1/3}}{\sqrt{1 - t}} \, dt \] ### Step 3: Solve the Integral Now we need to solve: \[ \int \frac{t^{1/3}}{\sqrt{1 - t}} \, dt \] This integral can be solved using the substitution \(u = 1 - t\), which gives \(du = -dt\) and \(t = 1 - u\): \[ = \int \frac{(1-u)^{1/3}}{\sqrt{u}} (-du) \] This integral can be solved using the Beta function or further substitutions, but we will use the known result: \[ \int \frac{x^m}{(1-x)^n} \, dx = B(m+1, n) \quad \text{(Beta function)} \] ### Step 4: Final Result After solving the integral, we substitute back to get: \[ \frac{2}{3} a^{3/2} \sin^{-1}\left(\left(\frac{x}{a}\right)^{3/2}\right) + C \] Thus, the final result is: \[ \int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx = \frac{2}{3} a^{3/2} \sin^{-1}\left(\left(\frac{x}{a}\right)^{3/2}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(x)dx)/(sqrt(2x+3))

Evaluate: int(sqrt(x))/(sqrt(x)-x^((1)/(3)))dx

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

int(sqrt(x)-(1)/(sqrt(x)))^(3)dx

int(dx)/(x sqrt(1-x^(3)))=

int(dx)/(x sqrt(1-x^(3)))=

int(dx)/(sqrt(x-3))

int(1)/(sqrt(x)+sqrt(x^(3)))dx=

int sqrt(x+3)dx

int_(0)^(2)(3^(sqrt(x)))/(sqrt(x))dx