Home
Class 12
MATHS
int2^x/sqrt(1-4^x) dx =lamda sin^-1 2^x+...

`int2^x/sqrt(1-4^x) dx =lamda sin^-1 2^x+c` then `lamda` equals to

A

`log 2`

B

`1//2`

C

`1/2 "log" 2`

D

`1/(log 2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(2^(x))/(sqrt(1-4^(x)))dx=k sin^(-1)2^(x)+c, then k=

If int(2^(x))/(sqrt(1-4^(x)))dx=k.sin^(-1)(2^(x))+c , then : k=

If int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C then :

int (dx)/(sqrt(1-tan ^(2) x))=(1)/(lamda)sin ^(-1) (lamda sin x)+C, then lamda=

int(1)/((sqrt(1-x^(2)))sin^(-1)x)dx

If int(e^(x)(2-x^(2)))/((1-x)sqrt(1-x^(2)))dx=mue^(x)((1+x)/(1-x))^(lamda)+c , then lamda+mu is equal to