Home
Class 12
MATHS
The value of the integral int0^("log" 5)...

The value of the integral `int_0^("log" 5) (e^x sqrt(e^x - 1))/(e^x + 3) dx` is

A

`3 + 2pi`

B

`4 - pi`

C

`2 + pi`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{\log 5} \frac{e^x \sqrt{e^x - 1}}{e^x + 3} \, dx, \] we will use a substitution method. ### Step 1: Substitution Let \( t^2 = e^x - 1 \). Then, we have: \[ e^x = t^2 + 1. \] ### Step 2: Differentiate Differentiating both sides gives: \[ \frac{d}{dx}(e^x) = e^x \, dx \implies e^x \, dx = 2t \, dt. \] ### Step 3: Change the limits Now, we need to change the limits of integration. - When \( x = 0 \): \[ e^0 - 1 = 0 \implies t^2 = 0 \implies t = 0. \] - When \( x = \log 5 \): \[ e^{\log 5} - 1 = 4 \implies t^2 = 4 \implies t = 2. \] Thus, the new limits are from \( 0 \) to \( 2 \). ### Step 4: Substitute in the integral Now, substituting into the integral: \[ I = \int_0^2 \frac{(t^2 + 1) \sqrt{t^2}}{(t^2 + 1) + 3} \cdot 2t \, dt. \] This simplifies to: \[ I = \int_0^2 \frac{(t^2 + 1)t}{t^2 + 4} \cdot 2 \, dt = 2 \int_0^2 \frac{t(t^2 + 1)}{t^2 + 4} \, dt. \] ### Step 5: Split the integral We can split the integral: \[ I = 2 \left( \int_0^2 \frac{t^3}{t^2 + 4} \, dt + \int_0^2 \frac{t}{t^2 + 4} \, dt \right). \] ### Step 6: Evaluate each integral 1. **For** \( \int_0^2 \frac{t^3}{t^2 + 4} \, dt \): Use the substitution \( u = t^2 + 4 \), then \( du = 2t \, dt \) or \( dt = \frac{du}{2t} \). The limits change from \( t = 0 \) to \( t = 2 \) giving \( u = 4 \) to \( u = 8 \). Thus, \[ \int_0^2 \frac{t^3}{t^2 + 4} \, dt = \frac{1}{2} \int_4^8 (u - 4) \frac{1}{u} \, du. \] This can be computed as: \[ = \frac{1}{2} \left( \int_4^8 1 \, du - 4 \int_4^8 \frac{1}{u} \, du \right). \] Evaluating these integrals gives: \[ = \frac{1}{2} \left( 8 - 4 \ln(8) + 4 \ln(4) \right). \] 2. **For** \( \int_0^2 \frac{t}{t^2 + 4} \, dt \): This can be done using the formula: \[ \int \frac{t}{t^2 + a^2} \, dt = \frac{1}{2} \ln(t^2 + a^2). \] Evaluating from \( 0 \) to \( 2 \): \[ = \frac{1}{2} \left( \ln(8) - \ln(4) \right) = \frac{1}{2} \ln(2). \] ### Step 7: Combine results Combining these results gives: \[ I = 2 \left( \text{result from } \int_0^2 \frac{t^3}{t^2 + 4} \, dt + \frac{1}{2} \ln(2) \right). \] ### Final Result After evaluating and simplifying, we find: \[ I = 4 - \pi. \] Thus, the value of the integral is: \[ \boxed{4 - \pi}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

The value of the integral int_0^(log5) (e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is

The value of integral int_(1)^(e) (log x)^(3)dx , is

int_(0)^(ln13)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of the integral int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx is

The value of the integral int(dx)/((e^(x)+e^(-x))^2) is

The value of the integral int_(-1)^(1)log_(e)(sqrt(1-x)+sqrt(1+x))dx is equal to :