Home
Class 12
MATHS
The value of int(Ln 3)^(Ln 4) (e^x sqrt(...

The value of `int_(Ln 3)^(Ln 4) (e^x sqrt(e^x - 3))/(e^x - 2) dx` is

A

`(4 - pi)/(2)`

B

`4 - pi/2`

C

`2 - pi`

D

`(2 - pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\ln 3}^{\ln 4} \frac{e^x \sqrt{e^x - 3}}{e^x - 2} \, dx, \] we will use a substitution method. ### Step 1: Substitution Let \( t = e^x - 2 \). Then, we differentiate to find \( dx \): \[ dt = e^x \, dx \quad \Rightarrow \quad dx = \frac{dt}{e^x}. \] Since \( e^x = t + 2 \), we can substitute \( dx \) as: \[ dx = \frac{dt}{t + 2}. \] ### Step 2: Change the limits of integration Now we need to change the limits of integration. When \( x = \ln 3 \): \[ t = e^{\ln 3} - 2 = 3 - 2 = 1. \] When \( x = \ln 4 \): \[ t = e^{\ln 4} - 2 = 4 - 2 = 2. \] Thus, the limits change from \( x = \ln 3 \) to \( x = \ln 4 \) into \( t = 1 \) to \( t = 2 \). ### Step 3: Substitute into the integral Now substitute \( t \) into the integral: \[ I = \int_{1}^{2} \frac{(t + 2) \sqrt{(t + 2) - 3}}{t} \cdot \frac{dt}{t + 2}. \] This simplifies to: \[ I = \int_{1}^{2} \frac{\sqrt{t - 1}}{t} \, dt. \] ### Step 4: Further substitution Let \( u = \sqrt{t - 1} \), then \( t = u^2 + 1 \) and \( dt = 2u \, du \). The limits change as follows: - When \( t = 1 \), \( u = 0 \). - When \( t = 2 \), \( u = 1 \). Thus, the integral becomes: \[ I = \int_{0}^{1} \frac{u}{u^2 + 1} \cdot 2u \, du = 2 \int_{0}^{1} \frac{u^2}{u^2 + 1} \, du. \] ### Step 5: Simplifying the integral We can split the integral: \[ I = 2 \left( \int_{0}^{1} 1 \, du - \int_{0}^{1} \frac{1}{u^2 + 1} \, du \right). \] The first integral evaluates to: \[ \int_{0}^{1} 1 \, du = 1. \] The second integral is: \[ \int_{0}^{1} \frac{1}{u^2 + 1} \, du = \frac{\pi}{4}. \] Thus, we have: \[ I = 2 \left( 1 - \frac{\pi}{4} \right) = 2 - \frac{\pi}{2}. \] ### Final Result The value of the integral is: \[ \boxed{2 - \frac{\pi}{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(ln13)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

Given int_(1)^(2) e^(x^(2))dx=a , the value of int_(e )^(e^(4)) sqrt(log_(e )x)dx , is

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

The value of the integral int_0^(log5) (e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is

The value of int(e^(6log x)-e^(5log x))/(e^(4log x)-e^(3log x))dx is equal

The value of int_(ln pi-ln2)^(ln pi)(e^(x))/(1-cos(((2)/(3))e^(x)))dx=

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

int(e^(log sqrt(x)))/(x)dx