Home
Class 12
MATHS
int1/(2sqrt((x)) (1 + x)) dx =...

`int1/(2sqrt((x)) (1 + x)) dx` =

A

`"cot"^(-1( sqrt(x)`

B

`"tan"^(-1) sqrt(x)`

C

`"sec"^(-1) sqrt(x)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{2\sqrt{x}(1+x)} \, dx \), we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ \int \frac{1}{2\sqrt{x}(1+x)} \, dx \] ### Step 2: Substitute \( t = \sqrt{x} \) Let’s make the substitution \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \quad \text{and} \quad dx = 2t \, dt \] ### Step 3: Substitute into the integral Now we substitute \( \sqrt{x} \) and \( dx \) in the integral: \[ \int \frac{1}{2t(1+t^2)} (2t \, dt) = \int \frac{1}{1+t^2} \, dt \] ### Step 4: Integrate The integral \( \int \frac{1}{1+t^2} \, dt \) is a standard integral that equals: \[ \tan^{-1}(t) + C \] ### Step 5: Substitute back \( t = \sqrt{x} \) Now we substitute back \( t \) to get the result in terms of \( x \): \[ \tan^{-1}(\sqrt{x}) + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{1}{2\sqrt{x}(1+x)} \, dx = \tan^{-1}(\sqrt{x}) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int1/(sqrt(2)+x)dx

int(1)/(2sqrt(x)(x+1))dx

int(x-2)sqrt((1+x)/(1-x))dx

Evaluate: (i) int1/(sqrt((x-1)(x-2)))\ dx (ii) int1/(sqrt(9+8x-x^2))\ dx

int1/(sqrt(x(2-3x)))dx

int_(1)^(2)sqrt((x-1)(2-x))dx=

Evaluate: (i) int1/(sqrt(x(1-2x)))\ dx (ii) int1/(sqrt(2x^2+3x-2))\ dx

Evaluate: (i) int1/(sqrt((2-x)^2-1))\ dx (ii) int(x^4+1)/(x^2+1)\ dx

"int1/ sqrt(x+2)dx

int(1)/(sqrt((x^(2)+3x+1)))dx