Home
Class 12
MATHS
int (x^5 dx)/(sqrt((1 + x^3))) =...

`int (x^5 dx)/(sqrt((1 + x^3))) = `

A

`2/3sqrt((1 + x^3)) (x^2 + 2)`

B

`2/9 sqrt((1 +x^3))(x^3 - 4)`

C

`2/9sqrt((1 + x^3)) (x^2 + 4)`

D

`2/9 sqrt((1 +x^3))(x^3 - 2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^5}{\sqrt{1 + x^3}} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We can rewrite \( x^5 \) as \( x^3 \cdot x^2 \). Thus, we have: \[ \int \frac{x^5}{\sqrt{1 + x^3}} \, dx = \int \frac{x^3 \cdot x^2}{\sqrt{1 + x^3}} \, dx \] **Hint:** Break down the numerator into simpler parts that can be easily substituted. ### Step 2: Substitution Let \( t = 1 + x^3 \). Then, differentiate both sides: \[ dt = 3x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3x^2} \] Now, we also need to express \( x^3 \) in terms of \( t \): \[ x^3 = t - 1 \] Substituting these into the integral gives: \[ \int \frac{(t - 1)x^2}{\sqrt{t}} \cdot \frac{dt}{3x^2} = \frac{1}{3} \int \frac{(t - 1)}{\sqrt{t}} \, dt \] **Hint:** Use a substitution to simplify the integral. ### Step 3: Simplify the Integral Now, we can simplify the integral: \[ \frac{1}{3} \int \left( \frac{t}{\sqrt{t}} - \frac{1}{\sqrt{t}} \right) dt = \frac{1}{3} \int \left( t^{1/2} - t^{-1/2} \right) dt \] **Hint:** Split the integral into two parts for easier integration. ### Step 4: Integrate Now we can integrate each term: \[ \frac{1}{3} \left( \int t^{1/2} \, dt - \int t^{-1/2} \, dt \right) \] Calculating these integrals: \[ \int t^{1/2} \, dt = \frac{t^{3/2}}{3/2} = \frac{2}{3} t^{3/2} \] \[ \int t^{-1/2} \, dt = 2t^{1/2} \] Thus, we have: \[ \frac{1}{3} \left( \frac{2}{3} t^{3/2} - 2t^{1/2} \right) = \frac{2}{9} t^{3/2} - \frac{2}{3} t^{1/2} \] **Hint:** Remember to include the constant of integration after integrating. ### Step 5: Substitute Back Now substitute \( t = 1 + x^3 \) back into the expression: \[ = \frac{2}{9} (1 + x^3)^{3/2} - \frac{2}{3} (1 + x^3)^{1/2} + C \] **Hint:** Always revert back to the original variable to finalize your answer. ### Final Answer Thus, the final answer is: \[ \int \frac{x^5}{\sqrt{1 + x^3}} \, dx = \frac{2}{9} (1 + x^3)^{3/2} - \frac{2}{3} (1 + x^3)^{1/2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(x^(5))/(sqrt(1+x^(3)))dx

int_()^()(dx)/(x sqrt(1+x^(3)))

If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

int(dx)/(x sqrt(1-x^(3)))=

int(dx)/(x sqrt(1-x^(3)))=

Evaluate: int(x^(5))/(sqrt(1+x^(3)))dx

int(x)/(sqrt(1-5x))dx

int(e^(5x))/(sqrt(e^(5x)+1))dx=

int x^(5)sqrt(a^(3)+x^(3))dx