Home
Class 12
MATHS
int (x^5)/(sqrt((1 + x^2))) dx =...

`int (x^5)/(sqrt((1 + x^2))) dx = `

A

`1/15 sqrt((1 + x^2)) [3x^4 + 4x^2 + 8]`

B

`1/15 sqrt((1 + x^2)) [3x^4 - 4x^2 + 8]`

C

`sqrt((1 + x^2)) [3x^4 + 4x^2 + 8]`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^5}{\sqrt{1 + x^2}} \, dx \), we can follow these steps: ### Step 1: Break down the numerator We can rewrite \( x^5 \) as \( x^4 \cdot x \). This allows us to separate the powers of \( x \): \[ \int \frac{x^5}{\sqrt{1 + x^2}} \, dx = \int \frac{x^4 \cdot x}{\sqrt{1 + x^2}} \, dx \] **Hint**: Consider breaking down the powers of \( x \) to simplify the integration process. ### Step 2: Substitution Let \( t = 1 + x^2 \). Then, differentiate \( t \) with respect to \( x \): \[ dt = 2x \, dx \quad \Rightarrow \quad dx = \frac{dt}{2x} \] Also, from our substitution, we have \( x^2 = t - 1 \), which gives \( x^4 = (t - 1)^2 \). **Hint**: Use substitution to simplify the integral, especially when dealing with square roots. ### Step 3: Substitute into the integral Substituting \( x^4 \) and \( dx \) into the integral, we get: \[ \int \frac{(t - 1)^2 \cdot x}{\sqrt{t}} \cdot \frac{dt}{2x} = \frac{1}{2} \int \frac{(t - 1)^2}{\sqrt{t}} \, dt \] **Hint**: Simplifying the integral after substitution can make it easier to integrate. ### Step 4: Expand the integrand Now, expand \( (t - 1)^2 \): \[ (t - 1)^2 = t^2 - 2t + 1 \] Thus, the integral becomes: \[ \frac{1}{2} \int \frac{t^2 - 2t + 1}{\sqrt{t}} \, dt = \frac{1}{2} \int \left( t^{3/2} - 2t^{1/2} + t^{-1/2} \right) \, dt \] **Hint**: Expanding the integrand can help in integrating term by term. ### Step 5: Integrate term by term Now we can integrate each term separately: \[ \frac{1}{2} \left( \frac{2}{5} t^{5/2} - 2 \cdot \frac{2}{3} t^{3/2} + 2t^{1/2} \right) + C \] This simplifies to: \[ \frac{1}{5} t^{5/2} - \frac{2}{3} t^{3/2} + t^{1/2} + C \] **Hint**: Use the power rule for integration to handle each term. ### Step 6: Substitute back for \( t \) Now substitute back \( t = 1 + x^2 \): \[ = \frac{1}{5} (1 + x^2)^{5/2} - \frac{2}{3} (1 + x^2)^{3/2} + (1 + x^2)^{1/2} + C \] **Hint**: Always remember to revert back to the original variable after integration. ### Final Result Thus, the final answer is: \[ \int \frac{x^5}{\sqrt{1 + x^2}} \, dx = \frac{1}{5} (1 + x^2)^{5/2} - \frac{2}{3} (1 + x^2)^{3/2} + \sqrt{1 + x^2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt((x-1)(x-2)))

int(x)/(sqrt(1-x^(2)))dx=?

int(dx)/(sqrt(1-x-x^(2)))

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

int(dx)/((1+x)sqrt(1+x-x^(2)))dx

int(a^(x))/(sqrt(1-a^(2x)))dx

int(e^(5x))/(sqrt(e^(5x)+1))dx=

int(1)/(sqrt(x-x^(2))) dx

int(dx)/(x-sqrt(x^(2)-1))