Home
Class 12
MATHS
intx sqrt((1 - x)/(1 + x)) dx =...

`intx sqrt((1 - x)/(1 + x)) dx` =

A

`(x//2 - 1)sqrt((1 - x^2) + 1/2 "sin"^(-1) x`

B

`(x//2 - 1) sqrt(1 - x^2) - 1/2 "sin"^(-1) x`

C

`sqrt((1 - x^2) + 1/2 "sin"^(-1) x`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x \sqrt{\frac{1 - x}{1 + x}} \, dx \), we will follow a systematic approach. ### Step 1: Rationalization We start by rationalizing the expression inside the integral. We rewrite the square root: \[ \sqrt{\frac{1 - x}{1 + x}} = \frac{\sqrt{1 - x}}{\sqrt{1 + x}} \] Thus, the integral becomes: \[ \int x \cdot \frac{\sqrt{1 - x}}{\sqrt{1 + x}} \, dx \] ### Step 2: Substitution Next, we will use the substitution \( x = \sin^2 \theta \). Then, we have: \[ dx = 2 \sin \theta \cos \theta \, d\theta = \sin(2\theta) \, d\theta \] Now, substituting \( x \) in the integral: \[ 1 - x = 1 - \sin^2 \theta = \cos^2 \theta \] \[ 1 + x = 1 + \sin^2 \theta = 1 + \sin^2 \theta \] The integral now transforms to: \[ \int \sin^2 \theta \cdot \frac{\sqrt{\cos^2 \theta}}{\sqrt{1 + \sin^2 \theta}} \cdot \sin(2\theta) \, d\theta \] ### Step 3: Simplifying the Integral The integral simplifies to: \[ \int \sin^2 \theta \cdot \cos \theta \cdot \sin(2\theta) \, d\theta \] Using \( \sin(2\theta) = 2 \sin \theta \cos \theta \): \[ = \int \sin^2 \theta \cdot \cos \theta \cdot 2 \sin \theta \cos \theta \, d\theta = 2 \int \sin^3 \theta \cos^2 \theta \, d\theta \] ### Step 4: Using Trigonometric Identity We can use the identity \( \sin^2 \theta = 1 - \cos^2 \theta \): \[ = 2 \int \sin^3 \theta (1 - \cos^2 \theta) \, d\theta \] ### Step 5: Integration Now, we can separate the integral: \[ = 2 \left( \int \sin^3 \theta \, d\theta - \int \sin^3 \theta \cos^2 \theta \, d\theta \right) \] ### Step 6: Solve Each Integral The integral \( \int \sin^3 \theta \, d\theta \) can be solved using integration by parts or trigonometric identities. ### Step 7: Back Substitution After solving the integral, we will substitute back \( \theta \) in terms of \( x \) using \( \theta = \sin^{-1}(\sqrt{x}) \). ### Final Result After performing the back substitution and simplifying, we will arrive at the final expression for the integral.
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

intx^2/sqrt(1-x)dx

intx/sqrt(x-a)dx

intx/sqrt(1-x^(2))dx

intx^2/sqrt(1-x^2)dx

intx/sqrt (x+5)dx

intx/(sqrt(x+a)+sqrt(x+b)) dx

intx^2sqrt (x+2)dx

Evaluate: intx\ sqrt((a^2-x^2)/(a^2+x^2))\ dx

intx^3/sqrt(1+x^8)dx

intx^5/sqrt(1+x^2)dx