Home
Class 12
MATHS
int0^(pi//4) [sqrt((tan x)) + sqrt((cot ...

`int_0^(pi//4) [sqrt((tan x)) + sqrt((cot x))] dx = `

A

`pi/(sqrt2)`

B

`pi/(2sqrt(2))`

C

`(-(3 pi)/sqrt2)`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{\frac{\pi}{4}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx, \] we can start by rewriting \(\tan x\) and \(\cot x\) in terms of sine and cosine: \[ I = \int_0^{\frac{\pi}{4}} \left( \sqrt{\frac{\sin x}{\cos x}} + \sqrt{\frac{\cos x}{\sin x}} \right) dx. \] This can be simplified to: \[ I = \int_0^{\frac{\pi}{4}} \left( \frac{\sqrt{\sin x}}{\sqrt{\cos x}} + \frac{\sqrt{\cos x}}{\sqrt{\sin x}} \right) dx. \] Next, we can combine the two terms under a common denominator: \[ I = \int_0^{\frac{\pi}{4}} \left( \frac{\sqrt{\sin^2 x} + \sqrt{\cos^2 x}}{\sqrt{\sin x \cos x}} \right) dx. \] Now, we can express \(\sqrt{\sin^2 x} + \sqrt{\cos^2 x}\) as \(\sqrt{\sin^2 x + \cos^2 x}\) since \(\sin^2 x + \cos^2 x = 1\): \[ I = \int_0^{\frac{\pi}{4}} \frac{1}{\sqrt{\sin x \cos x}} dx. \] Using the identity \(\sin x \cos x = \frac{1}{2} \sin(2x)\), we can rewrite the integral: \[ I = \int_0^{\frac{\pi}{4}} \frac{1}{\sqrt{\frac{1}{2} \sin(2x)}} dx = \sqrt{2} \int_0^{\frac{\pi}{4}} \frac{1}{\sqrt{\sin(2x)}} dx. \] Now, we can use the substitution \(u = 2x\), which gives \(du = 2dx\) or \(dx = \frac{du}{2}\). The limits change as follows: when \(x = 0\), \(u = 0\) and when \(x = \frac{\pi}{4}\), \(u = \frac{\pi}{2}\): \[ I = \sqrt{2} \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin u}} \cdot \frac{du}{2} = \frac{\sqrt{2}}{2} \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin u}} du. \] The integral \(\int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin u}} du\) is a known integral and evaluates to \(\sqrt{\pi}\): \[ I = \frac{\sqrt{2}}{2} \cdot \sqrt{\pi} = \frac{\sqrt{2\pi}}{2}. \] Thus, the final result is: \[ I = \frac{\sqrt{2\pi}}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi//2) x(sqrt(tan x)+sqrt(cot x))dx equals

Evaluate the following integral: int_0^(pi//4)(sqrt(t a n x)+sqrt(cotx))dx

int_(0)^(pi//2)(1)/(sqrt(tan x)-sqrt(cot x))dx=

int sqrt(cot x)dx

int_(0)^((pi)/(4))sqrt(tan x)dx