Home
Class 12
MATHS
If f(x) = A sin ((pix)/(2)) + B, f' (1/2...

If `f(x) = A sin ((pix)/(2)) + B, f' (1/2) = sqrt(2)` and `int_0^1 f(x) dx = (2A)/(pi)`, then the constants A and B are respectively

A

`pi/2 and pi/2`

B

`2/pi and 3/pi`

C

`0 and -4/pi`

D

`4/pi and 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the constants \( A \) and \( B \) given the function \( f(x) = A \sin\left(\frac{\pi x}{2}\right) + B \), the derivative condition \( f'\left(\frac{1}{2}\right) = \sqrt{2} \), and the integral condition \( \int_0^1 f(x) \, dx = \frac{2A}{\pi} \). ### Step 1: Differentiate \( f(x) \) The first step is to differentiate \( f(x) \): \[ f'(x) = A \cdot \frac{d}{dx}\left(\sin\left(\frac{\pi x}{2}\right)\right) + 0 = A \cdot \cos\left(\frac{\pi x}{2}\right) \cdot \frac{\pi}{2} \] Thus, \[ f'(x) = \frac{A\pi}{2} \cos\left(\frac{\pi x}{2}\right) \] ### Step 2: Evaluate \( f'\left(\frac{1}{2}\right) \) Now, we evaluate the derivative at \( x = \frac{1}{2} \): \[ f'\left(\frac{1}{2}\right) = \frac{A\pi}{2} \cos\left(\frac{\pi \cdot \frac{1}{2}}{2}\right) = \frac{A\pi}{2} \cos\left(\frac{\pi}{4}\right) = \frac{A\pi}{2} \cdot \frac{1}{\sqrt{2}} = \frac{A\pi}{2\sqrt{2}} \] We know from the problem statement that \( f'\left(\frac{1}{2}\right) = \sqrt{2} \). Therefore, we set up the equation: \[ \frac{A\pi}{2\sqrt{2}} = \sqrt{2} \] ### Step 3: Solve for \( A \) To find \( A \), we multiply both sides by \( 2\sqrt{2} \): \[ A\pi = 2 \cdot 2 = 4 \] Thus, \[ A = \frac{4}{\pi} \] ### Step 4: Evaluate the integral \( \int_0^1 f(x) \, dx \) Next, we compute the integral: \[ \int_0^1 f(x) \, dx = \int_0^1 \left(A \sin\left(\frac{\pi x}{2}\right) + B\right) dx \] This can be split into two parts: \[ = A \int_0^1 \sin\left(\frac{\pi x}{2}\right) dx + \int_0^1 B \, dx \] The integral of \( B \) over the interval \( [0, 1] \) is simply \( B \): \[ \int_0^1 B \, dx = B \] ### Step 5: Solve the integral \( \int_0^1 \sin\left(\frac{\pi x}{2}\right) dx \) To solve \( \int_0^1 \sin\left(\frac{\pi x}{2}\right) dx \), we use the substitution \( u = \frac{\pi x}{2} \), which gives \( dx = \frac{2}{\pi} du \). Changing the limits, when \( x = 0 \), \( u = 0 \) and when \( x = 1 \), \( u = \frac{\pi}{2} \): \[ \int_0^1 \sin\left(\frac{\pi x}{2}\right) dx = \int_0^{\frac{\pi}{2}} \sin(u) \cdot \frac{2}{\pi} du = \frac{2}{\pi} \left[-\cos(u)\right]_0^{\frac{\pi}{2}} = \frac{2}{\pi} \left[-\cos\left(\frac{\pi}{2}\right) + \cos(0)\right] = \frac{2}{\pi} (0 + 1) = \frac{2}{\pi} \] ### Step 6: Substitute back into the integral equation Now substituting back into the integral equation: \[ \int_0^1 f(x) \, dx = A \cdot \frac{2}{\pi} + B = \frac{2A}{\pi} \] Given that \( \int_0^1 f(x) \, dx = \frac{2A}{\pi} \), we have: \[ \frac{2A}{\pi} + B = \frac{2A}{\pi} \] This implies: \[ B = 0 \] ### Final Values Thus, the constants are: \[ A = \frac{4}{\pi}, \quad B = 0 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)=A sin((pi x)/(2))+B,f'((1)/(2))=sqrt(2) and int_(0)^(1)f(x)dx=(2A)/(pi) then constants A and B are

If f(x) = A sin ((pix)/(2)) + B and f'((1)/(2)) = sqrt(2) and int_(0)^(1)f(x) = (2A)/(pi) , then what is the value of B ?

If f(x)=A sin((pi x)/(2))+b,f'((1)/(2))=sqrt(2) and int_(0)^(1)f(x)dx=(2A)/(pi), then constants A and B are (pi)/(2)and(pi)/(2) (b) (2)/(pi) and (3)/(pi)0 and -(4)/(pi) (d) (4)/(pi) and 0

IF f(x)=A si n ((pi x)/2)+B and f'(1/2)=sqrt2 and int_0^1 f(x)dx =(2A)/pi then what is the value of B

In each following ,fill in the blanks so that the resulting sentence become true. If f(x)=A.2^x+B such that f'(1)=2 and int_0^3f(x)dx=7 then the constants A and B are

If f(x)=sin(2x^(2)-2[x]) for 0

If f(x)=int 2-(1)/(1+x^(2))-(1)/(sqrt(1+x^(2)))dx , then f is

f (x) =a cos (piy)+b, f'((1)/(2))=pi and int _(1//2)^(3//2) f (x) dx =2/pi+1, then find the value of -(12)/(pi) ((sin ^(-1) a )/(3) + cos ^(-1)b ).