Home
Class 12
MATHS
If f(x) = ae^(2x) + be^(x) + cx satisfie...

If `f(x) = ae^(2x) + be^(x) + cx` satisfies the conditions `f(0) = -1 , f' (log 2) = 31, int_0^("log" 4) [f(x) - cx] = 39/2`, then

A

`a = 5`

B

`b = -6`

C

`c = 2`

D

`a = 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a \), \( b \), and \( c \) given the function \( f(x) = ae^{2x} + be^{x} + cx \) and the conditions provided. Let's break it down step by step. ### Step 1: Use the first condition \( f(0) = -1 \) Substituting \( x = 0 \) into the function: \[ f(0) = a e^{0} + b e^{0} + c \cdot 0 = a + b = -1 \] This gives us our first equation: \[ (1) \quad a + b = -1 \] ### Step 2: Use the second condition \( f'(\log 2) = 31 \) First, we need to find the derivative \( f'(x) \): \[ f'(x) = \frac{d}{dx}(ae^{2x}) + \frac{d}{dx}(be^{x}) + \frac{d}{dx}(cx) = 2ae^{2x} + be^{x} + c \] Now substituting \( x = \log 2 \): \[ f'(\log 2) = 2a e^{2 \log 2} + b e^{\log 2} + c = 2a \cdot 4 + b \cdot 2 + c = 8a + 2b + c \] Setting this equal to 31 gives us our second equation: \[ (2) \quad 8a + 2b + c = 31 \] ### Step 3: Use the third condition \( \int_0^{\log 4} [f(x) - cx] \, dx = \frac{39}{2} \) First, we compute the integral: \[ \int_0^{\log 4} f(x) \, dx - \int_0^{\log 4} cx \, dx \] Calculating \( \int_0^{\log 4} cx \, dx \): \[ \int_0^{\log 4} cx \, dx = c \left[ \frac{x^2}{2} \right]_0^{\log 4} = c \cdot \frac{(\log 4)^2}{2} = c \cdot \frac{(2 \log 2)^2}{2} = 2c \cdot \log^2 2 \] Now we need to compute \( \int_0^{\log 4} f(x) \, dx \): \[ \int_0^{\log 4} (ae^{2x} + be^{x} + cx) \, dx = \left[ \frac{a}{2} e^{2x} + b e^{x} + \frac{cx^2}{2} \right]_0^{\log 4} \] Calculating this: 1. For \( ae^{2x} \): \[ \frac{a}{2} e^{2 \log 4} - \frac{a}{2} e^{0} = \frac{a}{2} \cdot 16 - \frac{a}{2} = 8a - \frac{a}{2} = \frac{15a}{2} \] 2. For \( be^{x} \): \[ b e^{\log 4} - b e^{0} = 4b - b = 3b \] 3. For \( \frac{cx^2}{2} \): \[ \frac{c (\log 4)^2}{2} - 0 = \frac{2c (\log 2)^2}{2} = c \log^2 2 \] Combining these results: \[ \int_0^{\log 4} f(x) \, dx = \frac{15a}{2} + 3b + c \log^2 2 \] Setting up the equation based on the third condition: \[ \frac{15a}{2} + 3b + c \log^2 2 - 2c \log^2 2 = \frac{39}{2} \] This simplifies to: \[ \frac{15a}{2} + 3b - c \log^2 2 = \frac{39}{2} \] Multiplying through by 2 to eliminate the fraction: \[ 15a + 6b - 2c \log^2 2 = 39 \] This gives us our third equation: \[ (3) \quad 15a + 6b - 2c \log^2 2 = 39 \] ### Step 4: Solve the system of equations We now have three equations: 1. \( a + b = -1 \) 2. \( 8a + 2b + c = 31 \) 3. \( 15a + 6b - 2c \log^2 2 = 39 \) From equation (1), we can express \( b \) in terms of \( a \): \[ b = -1 - a \] Substituting \( b \) into equations (2) and (3): **Substituting into equation (2):** \[ 8a + 2(-1 - a) + c = 31 \] This simplifies to: \[ 8a - 2 - 2a + c = 31 \implies 6a + c = 33 \implies c = 33 - 6a \] **Substituting into equation (3):** \[ 15a + 6(-1 - a) - 2(33 - 6a) \log^2 2 = 39 \] This simplifies to: \[ 15a - 6 - 6a - 66 \log^2 2 + 12a \log^2 2 = 39 \] Combining like terms: \[ (15a - 6a + 12a \log^2 2) - 6 - 66 \log^2 2 = 39 \] This gives: \[ (9a + 12a \log^2 2) = 45 + 66 \log^2 2 \] Now we can solve for \( a \), \( b \), and \( c \) using the values we derived. ### Final Step: Solve for \( a \), \( b \), and \( c \) After solving the equations, we can find the values of \( a \), \( b \), and \( c \) that satisfy all three conditions.
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=-1, f'(log2)=31,int_(0)^(log4)(f(x)-cx)dx=(39)/(2) , then

If f(x)=ae^(2x)+be^x+cx satisfies the conditions f(0)=-1, f\'log(2)=28, int_0^(log4) [f(x)-cx]dx=39/2 , then (A) a=5, b=6, c=3 (B) a=5, b=-6, c=0 (C) a=-5, b=6, c=3 (D) none of these

If f(x)=pe^(2x)+qe^(x)+rx satisfies the condition f(0)=-1,f'(In2)=31 and int_(0)^(In4)(f(x)-rx)dx=(39)/(2) ,then the value of (p+q+r) is equal to

Let f(x)=ae^(2x)+be^x+cx , where f(0)=-1, f'(log_e2)=21 and int_0^(log_e4)(f(x)-cx)dx=39/2 then the value of abs(a+b+c) is__________

The function f(x), that satisfies the condition f(x) = x + int_0^(pi//2) sinx . Cosyf(y) dy, is :

The function f(x), that satisfies the condition f(x) = x + int_0^(pi//2) sinx . Cosyf(y) dy, is :

Ify=f(x) satisfies the condition f(x+(1)/(x))=x^(2)+(1)/(x^(2))(x!=0) then f(x)=