Home
Class 12
MATHS
The value of theta in the interval [- pi...

The value of `theta` in the interval `[- pi, 0]` satisfying `sin theta + int_(theta)^(2theta) cos 2x dx = 0` is

A

`-pi//2`

B

`-pi`

C

`-pi//3`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin \theta + \int_{\theta}^{2\theta} \cos 2x \, dx = 0 \) for \( \theta \) in the interval \([- \pi, 0]\), we will follow these steps: ### Step 1: Evaluate the integral We need to evaluate the integral \( \int_{\theta}^{2\theta} \cos 2x \, dx \). Using the integral formula: \[ \int \cos kx \, dx = \frac{1}{k} \sin kx + C \] we have: \[ \int \cos 2x \, dx = \frac{1}{2} \sin 2x + C \] Thus, we can evaluate the definite integral: \[ \int_{\theta}^{2\theta} \cos 2x \, dx = \left[ \frac{1}{2} \sin 2x \right]_{\theta}^{2\theta} = \frac{1}{2} \sin(4\theta) - \frac{1}{2} \sin(2\theta) \] ### Step 2: Substitute the integral back into the equation Now substitute this result back into the original equation: \[ \sin \theta + \left( \frac{1}{2} \sin(4\theta) - \frac{1}{2} \sin(2\theta) \right) = 0 \] This simplifies to: \[ \sin \theta + \frac{1}{2} \sin(4\theta) - \frac{1}{2} \sin(2\theta) = 0 \] ### Step 3: Rearranging the equation Rearranging gives: \[ \sin \theta + \frac{1}{2} \sin(4\theta) = \frac{1}{2} \sin(2\theta) \] ### Step 4: Testing possible values of \( \theta \) Now we will test the possible values of \( \theta \) in the interval \([- \pi, 0]\) to find which satisfies the equation. 1. **Testing \( \theta = -\pi \)**: \[ \sin(-\pi) + \frac{1}{2} \sin(-4\pi) - \frac{1}{2} \sin(-2\pi) = 0 + 0 - 0 = 0 \] This satisfies the equation. 2. **Testing \( \theta = -\frac{\pi}{3} \)**: \[ \sin(-\frac{\pi}{3}) + \frac{1}{2} \sin(-\frac{4\pi}{3}) - \frac{1}{2} \sin(-\frac{2\pi}{3}) \] \[ = -\frac{\sqrt{3}}{2} + \frac{1}{2} \left(-\frac{\sqrt{3}}{2}\right) - \frac{1}{2} \left(\frac{\sqrt{3}}{2}\right) \] \[ = -\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} = -\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} = -\sqrt{3} \neq 0 \] This does not satisfy the equation. 3. **Testing \( \theta = -\frac{\pi}{2} \)**: \[ \sin(-\frac{\pi}{2}) + \frac{1}{2} \sin(-2\pi) - \frac{1}{2} \sin(-\pi) \] \[ = -1 + 0 - 0 = -1 \neq 0 \] This does not satisfy the equation. 4. **Testing \( \theta = 0 \)**: \[ \sin(0) + \frac{1}{2} \sin(0) - \frac{1}{2} \sin(0) = 0 + 0 - 0 = 0 \] This satisfies the equation. ### Conclusion The values of \( \theta \) that satisfy the equation in the interval \([- \pi, 0]\) are \( \theta = -\pi \) and \( \theta = 0 \).
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

The number of values of theta in the interval [-pi,pi] satisfying the equation costheta+sin2theta=0 is

Find the number of values of theta lying in the interval [0.2 pi] and satisfying the cubic 2sin^(3)theta-5sin^(2)theta+2sin theta=0

The sum of all values of theta in (0 , pi) satisfying sin^(2) 2 theta + cos^(4) 2 theta = 1 is:

The number of values of theta in the range [0,2 pi] satisfying the equation cos^(4)2 theta+2sin^(2)2 theta=17(sin theta+cos theta)^(8) is

The number of values of x lying in [-pi,pi] and satisfying 2sin^(2)theta=cos2 theta and sin2 theta+2cos2 theta cos theta-1=0 is

The number of values of theta in [0,2 pi] satisfying the equation 2sin^(2)theta=4+3cos theta are

The values of theta satisfying sin5 theta=sin3 theta-sin theta and 0

The sum of all values of theta in (0,pi/2) satisfying sin^2 2theta+cos^4 2theta=3/4 is