Home
Class 12
MATHS
If int (dx)/(sin^6 x + cos^6 x) = tan^(-...

If `int (dx)/(sin^6 x + cos^6 x) = tan^(-1) f(x)`, then

A

`f(x) = tan x - cot x`

B

`f(pi/4) = 0`

C

`f(x) = tan x + cot x`

D

`f(pi/4) = 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{\sin^6 x + \cos^6 x} \) and express it in the form \( \tan^{-1} f(x) \), we will follow these steps: ### Step 1: Simplify the Denominator We start with the expression in the denominator: \[ \sin^6 x + \cos^6 x \] Using the identity \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \), we can rewrite it as: \[ \sin^6 x + \cos^6 x = (\sin^2 x + \cos^2 x)(\sin^4 x - \sin^2 x \cos^2 x + \cos^4 x) \] Since \( \sin^2 x + \cos^2 x = 1 \), we have: \[ \sin^6 x + \cos^6 x = \sin^4 x - \sin^2 x \cos^2 x + \cos^4 x \] ### Step 2: Further Simplification Next, we can express \( \sin^4 x + \cos^4 x \) using the identity: \[ \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x = 1 - 2\sin^2 x \cos^2 x \] Thus, we have: \[ \sin^6 x + \cos^6 x = 1 - 3\sin^2 x \cos^2 x \] ### Step 3: Substitute \( t = \tan x \) Now, we will perform the substitution \( t = \tan x \), which gives us \( dx = \frac{dt}{1+t^2} \) and \( \sin^2 x = \frac{t^2}{1+t^2} \), \( \cos^2 x = \frac{1}{1+t^2} \). Therefore: \[ \sin^2 x \cos^2 x = \frac{t^2}{(1+t^2)^2} \] Substituting these into the integral: \[ \sin^6 x + \cos^6 x = 1 - 3\frac{t^2}{(1+t^2)^2} \] Thus, the integral becomes: \[ I = \int \frac{1+t^2}{(1 - 3\frac{t^2}{(1+t^2)^2})(1+t^2)} dt = \int \frac{(1+t^2)^2}{1+t^2 - 3t^2} dt = \int \frac{(1+t^2)^2}{1 - 2t^2} dt \] ### Step 4: Simplify the Integral Now we simplify the integral: \[ I = \int \frac{(1+t^2)^2}{1 - 2t^2} dt \] We can perform polynomial long division or split the integral into simpler parts. ### Step 5: Integrate We can integrate term by term: \[ I = \int \left( \frac{1}{1 - 2t^2} + \frac{2t^2}{1 - 2t^2} \right) dt \] The first part can be integrated using the formula for the integral of a rational function, and the second part can be integrated using substitution. ### Step 6: Back Substitute After integrating, we will back substitute \( t = \tan x \) to express the result in terms of \( x \). ### Step 7: Compare with \( \tan^{-1} f(x) \) Finally, we will compare our result with \( \tan^{-1} f(x) \) to determine \( f(x) \).
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

If int(dx)/(sin^(6)x+cos^(6)x)=cot^(-1)(f(x))+c then [f((pi)/(6))] = ( Where [.] denotes G.I.F)

" 6."int(dx)/(sin x cos^(2)x)

int(dx)/(1+sin6x)dx=

If int(dx)/(cos^(6)x+sin^(6)x)=tan^(-1)(-Kcot2x)+C then

If int(sin2x)/(sin^(4)x+cos^(4)x)dx=tan^(-1)[f(x)]+c , then f(pi/3)=

int(log(tan x))/(sin x cos x)dx=

If (sin x + cos x)/(sin x - cos x) = (6)/(5) , then the value of (tan^(2) x + 1)/(tan^(2) x-1) is :

underset then If int(dx)/(sin^(4)x+cos^(4)x)=(1)/(sqrt(2))tan^(-1)f(x)+C