Home
Class 12
MATHS
int a^(a^(a^x)).a^(a^x) .a^(x) dx is equ...

`int a^(a^(a^x)).a^(a^x) .a^(x) dx` is equal to

A

`(a^(a^x))/(("log" a)^3) + c`

B

`a^(a^(a^x)) ("log" a)^3 + c`

C

`(a^(a^(a^x)))/(("log" a)^3) + c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int a^{(a^{(a^x)})} \cdot a^{(a^x)} \cdot a^x \, dx \), we can follow these steps: ### Step 1: Simplify the Integral We start with the integral: \[ I = \int a^{(a^{(a^x)})} \cdot a^{(a^x)} \cdot a^x \, dx \] This can be rewritten as: \[ I = \int a^{(a^{(a^x)} + a^x + x)} \, dx \] ### Step 2: Use Substitution Let us make the substitution: \[ t = a^{(a^x)} \] Then, we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = a^{(a^x)} \cdot \log(a) \cdot a^x \cdot \log(a) \] Thus, we have: \[ dt = a^{(a^x)} \cdot a^x \cdot (\log a)^2 \, dx \] From this, we can express \( dx \) in terms of \( dt \): \[ dx = \frac{dt}{a^{(a^x)} \cdot a^x \cdot (\log a)^2} \] ### Step 3: Substitute in the Integral Now substituting \( t \) and \( dx \) into the integral: \[ I = \int a^t \cdot \frac{dt}{a^{(a^x)} \cdot a^x \cdot (\log a)^2} \] This simplifies to: \[ I = \frac{1}{(\log a)^2} \int a^t \, dt \] ### Step 4: Integrate \( a^t \) The integral of \( a^t \) is: \[ \int a^t \, dt = \frac{a^t}{\log a} + C \] Thus, we have: \[ I = \frac{1}{(\log a)^2} \left( \frac{a^t}{\log a} + C \right) \] ### Step 5: Substitute Back for \( t \) Now substituting back \( t = a^{(a^x)} \): \[ I = \frac{1}{(\log a)^3} a^{(a^{(a^x)})} + C \] ### Final Answer Thus, the final result for the integral is: \[ I = \frac{a^{(a^{(a^x)})}}{(\log a)^3} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int3^(3^(3^(x)))3^(3^(x))3^(x)dx is equal to

int(a^(x//2))/(sqrt(a^(-x)-a^(x)))dx is equal to

int(x^(x))^(x)(2x log_(e)x+x)dx is equal to

int(x^(3)-1)/(x^(3)+x) dx is equal to:

int (e^(x)+e^(-x))^(2)*(e^(x)-e^(-x))dx is equal to

int(2x^(3)-1)/(x^(4)+x)dx is equal to

The value of int e^(tan x)(x sec^(2)x+sin2x)dx is equal to

The value of int e^(tan x)(x sec^(2)x+sin2x)dx is equal to

int(x^(e-1)+e^(x-1))/(x^(e)+e^(x)) dx is equal to

int x ^(x)((ln x )^(2) -1/x) dx is equal to: