Home
Class 12
MATHS
Let m be any integer. Then, the integral...

Let m be any integer. Then, the integral `overset(pi)underset(0)int (sin 2m x)/(sin x)dx` equals

A

0

B

`pi`

C

`1`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

Let m be any integer. Then, the integral int_(0)^(pi) (sin 2m x)/(sin x)dx equals

int_(0)^( pi)(sin nx)/(sin x)dx is equal to

int_(0)^(2pi) (sin x-|sin x|) dx equal to

STATEMENT 1: Let m be any integer.Then the value of I_(m)=int_(0)^( pi)(sin2mx)/(sin x)dx is zero. STATEMENT 2:I_(1)=I_(2)=I_(3)=...=I_(m)

int _(0)^(2pi) (sin x + |sin x|)dx is equal to

int_(0)^(2 pi)(sin x+|sin x|)dx is equal to

Prove that the integral int_(0)^(pi) (sin 2 k x)/(sin x) dx equals zero if k an integer.

The value of the integral int_(0)^(pi/2)(cos x)/((2+sin x)(4+sin x))dx equals

The integral int_(pi)^(0)sqrt(1+4"sin"^(2)(x)/(2)-4 "sin"(x)/(2))dx equals ,

int_(0)^(pi//2) x sin x dx is equal to