Home
Class 12
MATHS
int(sin x)/(sin (x - a)) dx =...

`int(sin x)/(sin (x - a)) dx` =

A

`x sin a + sin a log sin (x - a)`

B

`x cos a + cos a log cos (x - a)`

C

`x cos a + sin a log sin (x - a)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\sin x}{\sin(x - a)} \, dx\), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sin x}{\sin(x - a)} \, dx \] ### Step 2: Use the Sine Difference Formula We can express \(\sin(x - a)\) using the sine difference formula: \[ \sin(x - a) = \sin x \cos a - \cos x \sin a \] Thus, we rewrite the integral: \[ I = \int \frac{\sin x}{\sin x \cos a - \cos x \sin a} \, dx \] ### Step 3: Simplify the Integral We can separate the terms in the denominator: \[ I = \int \frac{\sin x}{\sin x \cos a - \cos x \sin a} \, dx \] This can be rewritten as: \[ I = \int \frac{\sin x}{\sin x \cos a} \cdot \frac{1}{1 - \frac{\cos x \sin a}{\sin x \cos a}} \, dx \] This simplifies to: \[ I = \int \frac{1}{\cos a} \cdot \frac{1}{1 - \tan x \sin a / \cos a} \, dx \] ### Step 4: Use Partial Fraction Decomposition We can express the integrand using partial fractions: \[ I = \frac{1}{\cos a} \int \left(1 + \frac{\tan x \sin a}{\cos a}\right) \, dx \] ### Step 5: Integrate Each Term Now we can integrate each term separately: 1. The integral of \(1\) with respect to \(x\) is \(x\). 2. The integral of \(\tan x\) is \(-\log(\cos x)\). Thus, we have: \[ I = \frac{1}{\cos a} \left( x + \sin a \log(\sin x - a) \right) + C \] ### Final Answer Combining everything, we get: \[ I = x \cos a + \sin a \log(\sin(x - a)) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(sin(x+a))/(sin(x-a))dx

If int (sin x)/(sin (x-alpha))dx =Ax+B log sin (x-alpha)+C , then the value of (A,B) , is

I=int(sin(x+a))/(sin(x-a))dx

int(sin x)/(sin(x+alpha)dx)

int(sin x)/(sin(a+x))dx

int(sin x)/(sin(3x))dx=

int(sin(x-a))/(sin(x+a))dx=

int(sin x)/(1-sin x)dx

int(sin x)/(sin x+cos x)dx