Home
Class 12
MATHS
int (sin2 x)/(sin (x - pi/6) "sin" (x + ...

`int (sin2 x)/(sin (x - pi/6) "sin" (x + pi/6)) dx `=

A

`1/(sqrt3) ["log tan" x/2 + "log tan" (x/2 - pi/12)]`

B

`1/(sqrt3) ["log tan" (x/2 + pi/12) + "log tan" (x/2 - pi/12)]`

C

`1/(sqrt3) ["log cot" (x/2 + pi/12)]`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\sin 2x}{\sin(x - \frac{\pi}{6}) \sin(x + \frac{\pi}{6})} \, dx, \] we can follow these steps: ### Step 1: Rewrite \(\sin 2x\) Using the double angle identity, we have: \[ \sin 2x = 2 \sin x \cos x. \] So, we can rewrite the integral as: \[ \int \frac{2 \sin x \cos x}{\sin(x - \frac{\pi}{6}) \sin(x + \frac{\pi}{6})} \, dx. \] ### Step 2: Simplify the denominator Next, we can simplify the denominator using the sine addition and subtraction formulas: \[ \sin(x - \frac{\pi}{6}) = \sin x \cos \frac{\pi}{6} - \cos x \sin \frac{\pi}{6} = \sin x \cdot \frac{\sqrt{3}}{2} - \cos x \cdot \frac{1}{2}, \] \[ \sin(x + \frac{\pi}{6}) = \sin x \cos \frac{\pi}{6} + \cos x \sin \frac{\pi}{6} = \sin x \cdot \frac{\sqrt{3}}{2} + \cos x \cdot \frac{1}{2}. \] Thus, we can express the product: \[ \sin(x - \frac{\pi}{6}) \sin(x + \frac{\pi}{6}) = \left(\sin x \cdot \frac{\sqrt{3}}{2} - \cos x \cdot \frac{1}{2}\right) \left(\sin x \cdot \frac{\sqrt{3}}{2} + \cos x \cdot \frac{1}{2}\right). \] This is a difference of squares: \[ = \left(\frac{3}{4} \sin^2 x - \frac{1}{4} \cos^2 x\right) = \frac{1}{4}(3 \sin^2 x - \cos^2 x). \] ### Step 3: Substitute back into the integral Now, substituting back into the integral gives: \[ \int \frac{2 \sin x \cos x}{\frac{1}{4}(3 \sin^2 x - \cos^2 x)} \, dx = 8 \int \frac{\sin x \cos x}{3 \sin^2 x - \cos^2 x} \, dx. \] ### Step 4: Use substitution Let \( u = \sin x \). Then \( du = \cos x \, dx \). The integral becomes: \[ 8 \int \frac{u}{3u^2 - (1 - u^2)} \, du = 8 \int \frac{u}{4u^2 - 1} \, du. \] ### Step 5: Perform partial fraction decomposition We can decompose: \[ \frac{u}{4u^2 - 1} = \frac{A}{2u - 1} + \frac{B}{2u + 1}. \] Multiplying through by the denominator and solving for \(A\) and \(B\) gives: \[ u = A(2u + 1) + B(2u - 1). \] By substituting suitable values for \(u\), we can find \(A\) and \(B\). ### Step 6: Integrate each term Once we have \(A\) and \(B\), we can integrate each term separately. ### Step 7: Substitute back Finally, substitute back \(u = \sin x\) to express the result in terms of \(x\). ### Final Result The final result will be in the form of logarithmic functions based on the integration of the partial fractions. ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (i) int{1+tan x tan(x+theta)}dx (ii) int(sin2x)/(sin(x-(pi)/(6))sin(x+(pi)/(6)))dx

int(sin(2x))/(sin(x+(pi)/(6))sin(x-(pi)/(6)))dx

Evaluate: int(cos x)/(sin(x-(pi)/(6))sin(x+(pi)/(6)))dx

Evaluate: int(sin2x)/(sin(x-(pi)/(3))sin(x+(pi)/(3)))dx

int_0^(pi/2) sin x dx

int_0^pi (x sin x)/(1+sin x) dx=pi/2 (pi-2)

int_ (pi) ^ (16 pi) | sin x | dx =