Home
Class 12
MATHS
If f(x) = |(sin x + sin 2x + sin 3x,sin ...

If `f(x) = |(sin x + sin 2x + sin 3x,sin 2x,sin 3x),(3 + 4sin x ,3, 4 sin x ),(1 + sin x , sin x, 1)|` then the value of `int_0^(pi//2) f(x) dx` equals

A

`1`

B

`1/2`

C

`1/3`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_0^{\frac{\pi}{2}} f(x) \, dx \), where \[ f(x) = \begin{vmatrix} \sin x + \sin 2x + \sin 3x & \sin 2x & \sin 3x \\ 3 + 4 \sin x & 3 & 4 \sin x \\ 1 + \sin x & \sin x & 1 \end{vmatrix} \] ### Step 1: Simplify the Determinant We can simplify the determinant using column operations. We will perform the operation \( C_1 \to C_1 - C_2 - C_3 \): \[ C_1 = (\sin x + \sin 2x + \sin 3x) - \sin 2x - \sin 3x = \sin x \] Now, we update the first column: \[ f(x) = \begin{vmatrix} \sin x & \sin 2x & \sin 3x \\ (3 + 4 \sin x) - 3 - 4 \sin x & 3 & 4 \sin x \\ (1 + \sin x) - \sin x - 1 & \sin x & 1 \end{vmatrix} \] This simplifies to: \[ f(x) = \begin{vmatrix} \sin x & \sin 2x & \sin 3x \\ 0 & 3 & 4 \sin x \\ 0 & \sin x & 1 \end{vmatrix} \] ### Step 2: Expand the Determinant Now, we can expand the determinant along the first column: \[ f(x) = \sin x \begin{vmatrix} 3 & 4 \sin x \\ \sin x & 1 \end{vmatrix} \] Calculating the 2x2 determinant: \[ = \sin x (3 \cdot 1 - 4 \sin x \cdot \sin x) = \sin x (3 - 4 \sin^2 x) \] Thus, we have: \[ f(x) = \sin x (3 - 4 \sin^2 x) \] ### Step 3: Recognize the Expression Notice that \( 3 - 4 \sin^2 x = 3 \cos^2 x - \sin^2 x = \cos 3x \) (using the triple angle formula). Therefore, we can write: \[ f(x) = \sin x \cdot \cos 3x \] ### Step 4: Integrate Now we need to evaluate the integral: \[ \int_0^{\frac{\pi}{2}} f(x) \, dx = \int_0^{\frac{\pi}{2}} \sin x \cos 3x \, dx \] Using the product-to-sum identities: \[ \sin x \cos 3x = \frac{1}{2} (\sin(4x) + \sin(-2x)) = \frac{1}{2} (\sin(4x) - \sin(2x)) \] Thus, the integral becomes: \[ \int_0^{\frac{\pi}{2}} \sin x \cos 3x \, dx = \frac{1}{2} \left( \int_0^{\frac{\pi}{2}} \sin(4x) \, dx - \int_0^{\frac{\pi}{2}} \sin(2x) \, dx \right) \] ### Step 5: Evaluate the Integrals 1. **Integral of \( \sin(4x) \)**: \[ \int \sin(4x) \, dx = -\frac{1}{4} \cos(4x) \] Evaluating from \( 0 \) to \( \frac{\pi}{2} \): \[ = -\frac{1}{4} \left( \cos(2\pi) - \cos(0) \right) = -\frac{1}{4} (1 - 1) = 0 \] 2. **Integral of \( \sin(2x) \)**: \[ \int \sin(2x) \, dx = -\frac{1}{2} \cos(2x) \] Evaluating from \( 0 \) to \( \frac{\pi}{2} \): \[ = -\frac{1}{2} \left( \cos(\pi) - \cos(0) \right) = -\frac{1}{2} (-1 - 1) = 1 \] ### Step 6: Combine Results Putting it all together: \[ \int_0^{\frac{\pi}{2}} f(x) \, dx = \frac{1}{2} (0 - 1) = -\frac{1}{2} \] ### Final Result The value of \( \int_0^{\frac{\pi}{2}} f(x) \, dx \) is: \[ \frac{1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|(sin x+sin x 2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,sinx,1)|, then the value of int_0^(pi/2) f(x) dx is

(cos 2x sin x + cos 6x sin 3x)/(sin 2x sin x + sin 6x sin 3x) =cot 5x

int sin x .sin2x.sin3x dx

(sin x) / (sin2x sin3x) + (sin x) / (sin3x sin4x) + (sin x) / (sin4x sin5x) + .... n

lim_ (x rarr0) (sin x + sin4x) / (sin2x + sin3x)

Let F(x)=|[1,1+sin x,1+sin x+cos x],[2,3+2sin x,4+3sin x+2cos x],[3,6+3sin x,10+6sin x+3cos x]| then the value of F'((pi)/(2)) =

If f(x)=det[[sin x,sin2x,0sin2x,sin3x,sin4xsin3x,sin4x,sin5x]] ,then:

int (sin 2x)/(3 sin^(4) x-4 sin^(2) x+1) dx

int_(0)^(pi//2)sinx sin2x sin3x sin 4x dx=