Home
Class 12
MATHS
Let In = int0^(pi//4) tan^n x dx (n gt 0...

Let `I_n = int_0^(pi//4) tan^n x dx (n gt 0 and in N)`, then

A

`I_n = I_(n-2)`

B

`I_n + I_(n-2) = 1/(n -1)`

C

`I_n - I_(n - 2) = 1/(n -1)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \) for \( n > 0 \) and \( n \in \mathbb{N} \), we can use a recursive relationship between \( I_n \) and \( I_{n-2} \). ### Step-by-Step Solution: 1. **Establish the Recursive Relationship:** We start by noting that: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \] We can express \( \tan^n x \) as \( \tan^{n-2} x \cdot \tan^2 x \): \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot \tan^2 x \, dx \] 2. **Use the Identity for \( \tan^2 x \):** We know that \( \tan^2 x = \sec^2 x - 1 \). Thus: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x (\sec^2 x - 1) \, dx \] This expands to: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \sec^2 x \, dx - \int_0^{\frac{\pi}{4}} \tan^{n-2} x \, dx \] 3. **Evaluate the First Integral:** The first integral can be simplified using the substitution \( u = \tan x \), which gives \( du = \sec^2 x \, dx \). The limits change from \( x = 0 \) to \( x = \frac{\pi}{4} \) (i.e., \( u = 0 \) to \( u = 1 \)): \[ I_n = \int_0^1 u^{n-2} \, du - I_{n-2} \] 4. **Calculate the Integral:** The integral \( \int_0^1 u^{n-2} \, du \) evaluates to: \[ \int_0^1 u^{n-2} \, du = \frac{1}{n-1} \] Therefore, we have: \[ I_n = \frac{1}{n-1} - I_{n-2} \] 5. **Final Recursive Relation:** Rearranging gives us the recursive relationship: \[ I_n + I_{n-2} = \frac{1}{n-1} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

Let I_(n)=int_(0)^(pi//4)tan^(n)xdx,n in N , Then

IF I_n=int_0^(pi//4) tan^n x dx then what is I_n+I_(n+2) equal to

let I_(n)=int_(0)^((pi)/(4))tan^(n)xdx,n>1

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

I_(n)=int_(0)^(pi//4) tan^(n)x dx , where n in N Statement-1: int_(0)^(pi//4) tan^(4)x dx=(3pi-8)/(12) Statement-2: I_(n)+I_(n-2)=(1)/(n-1)

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

If I_(n)=int_(0)^(pi//4)tan^(n)x dx , where n ge 2 , then : I_(n-2)+I_(n)=