Home
Class 12
MATHS
If un = int0^(pi//2) (sin^2 nx)/(sin x) ...

If `u_n = int_0^(pi//2) (sin^2 nx)/(sin x) dx`, then
`u_2 - u_1, u_3 - u_2, u_4 - u_3`, .... Are in

A

A.P.

B

G.P.

C

H.P.

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression given for \( u_n \) and find the differences \( u_n - u_{n-1} \) for \( n = 2, 3, 4, \ldots \). ### Step-by-step Solution: 1. **Define the Expression**: We have: \[ u_n = \int_0^{\frac{\pi}{2}} \frac{\sin^2(nx)}{\sin x} \, dx \] 2. **Find the Difference**: We need to compute \( u_n - u_{n-1} \): \[ u_n - u_{n-1} = \int_0^{\frac{\pi}{2}} \frac{\sin^2(nx)}{\sin x} \, dx - \int_0^{\frac{\pi}{2}} \frac{\sin^2((n-1)x)}{\sin x} \, dx \] This simplifies to: \[ u_n - u_{n-1} = \int_0^{\frac{\pi}{2}} \frac{\sin^2(nx) - \sin^2((n-1)x)}{\sin x} \, dx \] 3. **Use the Identity for Sine Squared**: We can use the identity: \[ \sin^2 A - \sin^2 B = (\sin A - \sin B)(\sin A + \sin B) \] Let \( A = nx \) and \( B = (n-1)x \): \[ \sin^2(nx) - \sin^2((n-1)x) = (\sin(nx) - \sin((n-1)x))(\sin(nx) + \sin((n-1)x)) \] 4. **Apply the Sine Difference Formula**: We can use the sine difference formula: \[ \sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] Thus: \[ \sin(nx) - \sin((n-1)x) = 2 \cos\left(\frac{(2n-1)x}{2}\right) \sin\left(\frac{x}{2}\right) \] 5. **Substituting Back**: Substitute back into the integral: \[ u_n - u_{n-1} = \int_0^{\frac{\pi}{2}} \frac{2 \cos\left(\frac{(2n-1)x}{2}\right) \sin\left(\frac{x}{2}\right) \cdot (\sin(nx) + \sin((n-1)x))}{\sin x} \, dx \] 6. **Evaluate the Integral**: The integral can be evaluated, but we are primarily interested in the form of \( u_n - u_{n-1} \). The key point is that: \[ u_n - u_{n-1} \text{ can be expressed as a function of } n \] 7. **Check for Patterns**: After evaluating for specific values of \( n \): - \( u_2 - u_1 \) - \( u_3 - u_2 \) - \( u_4 - u_3 \) We find that these differences yield terms of the form: \[ \frac{1}{2n - 1} \] Specifically: - \( u_2 - u_1 = \frac{1}{3} \) - \( u_3 - u_2 = \frac{1}{5} \) - \( u_4 - u_3 = \frac{1}{7} \) 8. **Conclusion**: The sequence \( u_2 - u_1, u_3 - u_2, u_4 - u_3, \ldots \) is: \[ \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \ldots \] The reciprocals of these terms are: \[ 3, 5, 7, \ldots \] which are in Arithmetic Progression (AP). Therefore, the original terms are in Harmonic Progression (HP). ### Final Answer: The differences \( u_2 - u_1, u_3 - u_2, u_4 - u_3, \ldots \) are in HP.
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

If U_n=int_0^(pi/2)(sin^2n x)/(sin^2x)dx, then show that U_1,U_2,U_3.......U_n constitute an AP. Hence or otherwise find the value of U_n.

If u_(n)=int_(0)^((pi)/(2))x^(n)sin xdx then u_(10)+90u_(8) is equal to

If u _(n) = int _(0) ^(pi//2) x ^(n) sin x dx, n in N then the value of u _(10) + 90 u _(s) is

If inte^(sinx).sin2xdx=-2u.e^(sinx)+c, then u=

If u_(10)=int_(0)^(10)x^(10)sin xdx, then the value of u_(10)+90u_(8) is :

If u_(n) = sin ^(n) theta + cos ^(n) theta, then 2 u_(6) -3 u_(4) is equal to

If u_(n) = cos^(n) alpha + sin^(n) alpha , then the value of 2 u_(6) - 3 u_(4) +1 is :