Home
Class 12
MATHS
If I1 = int0^(pi//2) x/(sin x) dx and I...

If `I_1 = int_0^(pi//2) x/(sin x) dx` and `I_2 = int_0^1 (tan^(-1) x)/(x) dx`, then `(I_1)/(I_2) `=

A

`1/2`

B

`1`

C

`2`

D

`pi/2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

If I_(1)=int_(0)^(pi//2)log (sin x)dx and I_(2)=int_(0)^(pi//2)log (sin 2x)dx , then

If I_(1)=int_(0)^(pi//2)"x.sin x dx" and I_(2)=int_(0)^(pi//2)"x.cos x dx" , then

Given I=int_(0)^( pi/2)(x)/(sin x)dx, quad J=int_(0)^(1)(tan^(-1)x)/(x)dx. Then value of (I)/(J) is:

If I_(1)=int_(0)^(pi//2)f(sin2x)sin x dx and I_(2)=int_(0)^(pi//4)f(cos2x)cosx dx , then I_(1)//I_(2) is equal to

For f(x) =x^(4) +|x|, let I_(1)= int _(0)^(pi)f(cos x) dx and I_(2)= int_(0)^(pi//2) f(sin x ) dx "then" (I_(1))/(I_(2)) has the value equal to

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

I=int_(0)^(1)((1+x)/(2-x))dx

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to