Home
Class 12
MATHS
Consider the integrals I1 = int0^1 e^(-y...

Consider the integrals `I_1 = int_0^1 e^(-y) cos^2 y dy`
`I_2 = int_0^1 e^(-y^2) cos^2 y dy , I_3 = int_0^1 e^(-y^2) dy`
`I_4 = int_0^1 e^(-1/2 y^2) dy`, where `0 lt y lt 1`. If I be the greatest amongest `I_1, I_2, I_3, ...I_4` then

A

`I = I_1`

B

`3I = I_2`

C

`I = I_3`

D

`I = I_4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compare the four integrals \( I_1, I_2, I_3, \) and \( I_4 \) and determine which one is the greatest. ### Step-by-Step Solution: 1. **Define the Integrals:** \[ I_1 = \int_0^1 e^{-y} \cos^2 y \, dy \] \[ I_2 = \int_0^1 e^{-y^2} \cos^2 y \, dy \] \[ I_3 = \int_0^1 e^{-y^2} \, dy \] \[ I_4 = \int_0^1 e^{-\frac{1}{2}y^2} \, dy \] 2. **Compare \( I_1 \) and \( I_2 \):** Since \( y^2 < y \) for \( 0 < y < 1 \), we have: \[ e^{-y^2} > e^{-y} \] Therefore, multiplying both sides by \( \cos^2 y \) (which is always non-negative), we get: \[ e^{-y^2} \cos^2 y > e^{-y} \cos^2 y \] Thus: \[ I_2 > I_1 \] 3. **Compare \( I_2 \) and \( I_3 \):** Since \( \cos^2 y \) is always less than or equal to 1 for \( 0 < y < 1 \): \[ e^{-y^2} \cos^2 y < e^{-y^2} \] Therefore: \[ I_2 < I_3 \] 4. **Compare \( I_3 \) and \( I_4 \):** Since \( \frac{1}{2}y^2 < y^2 \) for \( 0 < y < 1 \), we have: \[ e^{-\frac{1}{2}y^2} > e^{-y^2} \] Thus: \[ I_4 > I_3 \] 5. **Combine the Inequalities:** From the comparisons, we have: \[ I_4 > I_3 > I_2 > I_1 \] 6. **Conclusion:** Therefore, the greatest integral among \( I_1, I_2, I_3, \) and \( I_4 \) is: \[ I = I_4 \] ### Final Answer: \[ I = I_4 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int_0^1y^2sqrt(1-y^2)dy

Consider the integrals I_(1)=int_(0)^(1)e^(-x)cos^(2)xdx,I_(2)=int_(0)^(1) e^(-x^(2))cos^(2)x dx,I_(3)=int_(0)^(1) e^(-x^(2))dx and I_(4)=int_(0)^(1) e^(-x^(1//2)x^(2))dx . The greatest of these integrals, is

int_0^1 int_1^2 (x^2+y^2) dx dy

(i) int_0^4 (2x+3) dx (ii) int_0^4 (2x-1)dx

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(2))dx then