Home
Class 12
MATHS
If I1 = intt^1 1/(1 + x^2) dx and I2 = i...

If `I_1 = int_t^1 1/(1 + x^2) dx and I_2 = int_1^(1//t) 1/(1 + x^2) dx` for `t gt 0` then

A

`I_1 = I_2`

B

`I_1 gt I_2`

C

`I_2 gt I_1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and show that they are equal. ### Step-by-Step Solution: 1. **Define the Integrals**: \[ I_1 = \int_t^1 \frac{1}{1 + x^2} \, dx \] \[ I_2 = \int_1^{\frac{1}{t}} \frac{1}{1 + x^2} \, dx \] 2. **Evaluate \( I_1 \)**: The integral \( \int \frac{1}{1 + x^2} \, dx \) is known to be \( \tan^{-1}(x) \). Therefore, we can evaluate \( I_1 \): \[ I_1 = \left[ \tan^{-1}(x) \right]_t^1 = \tan^{-1}(1) - \tan^{-1}(t) \] Since \( \tan^{-1}(1) = \frac{\pi}{4} \), we have: \[ I_1 = \frac{\pi}{4} - \tan^{-1}(t) \] 3. **Evaluate \( I_2 \)**: Similarly, we evaluate \( I_2 \): \[ I_2 = \left[ \tan^{-1}(x) \right]_1^{\frac{1}{t}} = \tan^{-1}\left(\frac{1}{t}\right) - \tan^{-1}(1) \] Again, substituting \( \tan^{-1}(1) = \frac{\pi}{4} \): \[ I_2 = \tan^{-1}\left(\frac{1}{t}\right) - \frac{\pi}{4} \] 4. **Use the Identity for \( \tan^{-1} \)**: We can use the identity: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \] Let \( a = 1 \) and \( b = t \): \[ I_1 = \frac{\pi}{4} - \tan^{-1}(t) = \tan^{-1}\left(\frac{1 - t}{1 + t}\right) \] And for \( I_2 \): \[ I_2 = \tan^{-1}\left(\frac{1}{t}\right) - \frac{\pi}{4} = \tan^{-1}\left(\frac{\frac{1}{t} - 1}{1 + \frac{1}{t}}\right) \] 5. **Show \( I_1 = I_2 \)**: Now we can see that: \[ I_1 = \tan^{-1}\left(\frac{1 - t}{1 + t}\right) \] \[ I_2 = \tan^{-1}\left(\frac{\frac{1 - t}{t}}{1 + \frac{1}{t}}\right) = \tan^{-1}\left(\frac{1 - t}{1 + t}\right) \] Thus, we conclude that: \[ I_1 = I_2 \] ### Final Result: \[ I_1 = I_2 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

If I_(1)=int_(x)^(1)(1)/(1+t^(2))dt and I_(2)=int_(1)^((1)/(2))(1)/(1+t^(2))dt for x>=0 then (A) I_(1)=I_(2)(B)I_(1)>I_(2)(C)I_(1)

Let I_1= int_0^1 (1-x^50)^100 dx and I_2= int_0^1(1-x^50)^101 dx and I_1= lamda I_2 , then lamda is

If I_(1) int_(1)^(2) dx/sqrt(1+x^(2)) and I_(1) = int _(1)^(2) dx/x then

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s