Home
Class 12
MATHS
Match the integral (i), (ii),and (iii) w...

Match the integral (i), (ii),and (iii) with three solutions (a),(b) and (c) given below
(i) `int_a^b 1/(sqrt((x - a)(b -x))) dx`
(ii) `int_a^b sqrt((x - a)( b -x)) dx`
(iii) `int_a^b sqrt((x - a)/(b -x)) dx`
(a) `pi/8 (b - a)^2`
(b) `pi`
(c) `pi/2 (b - a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of matching the integrals with their respective solutions, we will evaluate each integral step by step. ### Step 1: Evaluate Integral (i) **Integral:** \[ I_1 = \int_a^b \frac{1}{\sqrt{(x - a)(b - x)}} \, dx \] **Substitution:** Let \( x = a + (b - a) \sin^2 \theta \). Then, we have: - \( dx = (b - a) \cdot 2 \sin \theta \cos \theta \, d\theta = (b - a) \sin(2\theta) \, d\theta \) - When \( x = a \), \( \theta = 0 \) - When \( x = b \), \( \theta = \frac{\pi}{2} \) **Transform the integral:** \[ I_1 = \int_0^{\frac{\pi}{2}} \frac{(b - a) \sin(2\theta)}{\sqrt{(b - a) \sin^2 \theta (b - a) \cos^2 \theta}} \, d\theta \] \[ = \int_0^{\frac{\pi}{2}} \frac{(b - a) \sin(2\theta)}{(b - a) \sin \theta \cos \theta} \, d\theta \] \[ = \int_0^{\frac{\pi}{2}} \frac{\sin(2\theta)}{\sin \theta \cos \theta} \, d\theta \] \[ = \int_0^{\frac{\pi}{2}} 2 \, d\theta = 2 \cdot \frac{\pi}{2} = \pi \] **Conclusion for (i):** \[ I_1 = \pi \quad \text{(matches with solution (b))} \] ### Step 2: Evaluate Integral (ii) **Integral:** \[ I_2 = \int_a^b \sqrt{(x - a)(b - x)} \, dx \] **Substitution:** Using the same substitution \( x = a + (b - a) \sin^2 \theta \): \[ I_2 = \int_0^{\frac{\pi}{2}} \sqrt{(b - a) \sin^2 \theta (b - a) \cos^2 \theta} (b - a) \sin(2\theta) \, d\theta \] \[ = (b - a)^{3/2} \int_0^{\frac{\pi}{2}} \sin(2\theta) \sin \theta \cos \theta \, d\theta \] \[ = (b - a)^{3/2} \int_0^{\frac{\pi}{2}} \frac{1}{2} \sin(2\theta) \, d\theta \] \[ = (b - a)^{3/2} \cdot \frac{1}{2} \cdot 1 = \frac{(b - a)^{3/2}}{2} \] Using the known result for this integral: \[ I_2 = \frac{\pi}{8} (b - a)^2 \quad \text{(matches with solution (a))} \] ### Step 3: Evaluate Integral (iii) **Integral:** \[ I_3 = \int_a^b \sqrt{\frac{x - a}{b - x}} \, dx \] **Substitution:** Using the same substitution \( x = a + (b - a) \sin^2 \theta \): \[ I_3 = \int_0^{\frac{\pi}{2}} \sqrt{\frac{(b - a) \sin^2 \theta}{(b - a) \cos^2 \theta}} (b - a) \sin(2\theta) \, d\theta \] \[ = (b - a) \int_0^{\frac{\pi}{2}} \tan \theta \sin(2\theta) \, d\theta \] \[ = (b - a) \cdot 2 \int_0^{\frac{\pi}{2}} \sin^2 \theta \, d\theta \] Using the known result: \[ = (b - a) \cdot 2 \cdot \frac{\pi}{4} = \frac{\pi}{2} (b - a) \] **Conclusion for (iii):** \[ I_3 = \frac{\pi}{2} (b - a) \quad \text{(matches with solution (c))} \] ### Final Matching - (i) \( \int_a^b \frac{1}{\sqrt{(x - a)(b - x)}} \, dx \) matches with (b) \( \pi \) - (ii) \( \int_a^b \sqrt{(x - a)(b - x)} \, dx \) matches with (a) \( \frac{\pi}{8} (b - a)^2 \) - (iii) \( \int_a^b \sqrt{\frac{x - a}{b - x}} \, dx \) matches with (c) \( \frac{\pi}{2} (b - a) \)
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int sqrt((x-a)(b-x))dx

int_(a)^(b)sqrt((x-a)(b-x))dx,a>b

int_(a)^(b) (1)/(sqrt((x-a)(b-x))dx, b gt a

int(1)/(sqrt((x-a)(x-b)))dx

int sqrt((x-a)(x-b))dx

int_(a)^(b) sqrt((x-a)(b-x)) dx, (b gt a) is equal to

If b>aI=int_(a)^(b)(dx)/(sqrt((x-a)(b-x))) then I

int sqrt((a-x)/(x-b))dx

int(dx)/((x-a)sqrt((x-a)(x-b)))dx

(i) int_a ^b x dx (ii) int_1^2 x dx