To solve the problem of matching the integrals with their respective solutions, we will evaluate each integral step by step.
### Step 1: Evaluate Integral (i)
**Integral:**
\[
I_1 = \int_a^b \frac{1}{\sqrt{(x - a)(b - x)}} \, dx
\]
**Substitution:**
Let \( x = a + (b - a) \sin^2 \theta \). Then, we have:
- \( dx = (b - a) \cdot 2 \sin \theta \cos \theta \, d\theta = (b - a) \sin(2\theta) \, d\theta \)
- When \( x = a \), \( \theta = 0 \)
- When \( x = b \), \( \theta = \frac{\pi}{2} \)
**Transform the integral:**
\[
I_1 = \int_0^{\frac{\pi}{2}} \frac{(b - a) \sin(2\theta)}{\sqrt{(b - a) \sin^2 \theta (b - a) \cos^2 \theta}} \, d\theta
\]
\[
= \int_0^{\frac{\pi}{2}} \frac{(b - a) \sin(2\theta)}{(b - a) \sin \theta \cos \theta} \, d\theta
\]
\[
= \int_0^{\frac{\pi}{2}} \frac{\sin(2\theta)}{\sin \theta \cos \theta} \, d\theta
\]
\[
= \int_0^{\frac{\pi}{2}} 2 \, d\theta = 2 \cdot \frac{\pi}{2} = \pi
\]
**Conclusion for (i):**
\[
I_1 = \pi \quad \text{(matches with solution (b))}
\]
### Step 2: Evaluate Integral (ii)
**Integral:**
\[
I_2 = \int_a^b \sqrt{(x - a)(b - x)} \, dx
\]
**Substitution:**
Using the same substitution \( x = a + (b - a) \sin^2 \theta \):
\[
I_2 = \int_0^{\frac{\pi}{2}} \sqrt{(b - a) \sin^2 \theta (b - a) \cos^2 \theta} (b - a) \sin(2\theta) \, d\theta
\]
\[
= (b - a)^{3/2} \int_0^{\frac{\pi}{2}} \sin(2\theta) \sin \theta \cos \theta \, d\theta
\]
\[
= (b - a)^{3/2} \int_0^{\frac{\pi}{2}} \frac{1}{2} \sin(2\theta) \, d\theta
\]
\[
= (b - a)^{3/2} \cdot \frac{1}{2} \cdot 1 = \frac{(b - a)^{3/2}}{2}
\]
Using the known result for this integral:
\[
I_2 = \frac{\pi}{8} (b - a)^2 \quad \text{(matches with solution (a))}
\]
### Step 3: Evaluate Integral (iii)
**Integral:**
\[
I_3 = \int_a^b \sqrt{\frac{x - a}{b - x}} \, dx
\]
**Substitution:**
Using the same substitution \( x = a + (b - a) \sin^2 \theta \):
\[
I_3 = \int_0^{\frac{\pi}{2}} \sqrt{\frac{(b - a) \sin^2 \theta}{(b - a) \cos^2 \theta}} (b - a) \sin(2\theta) \, d\theta
\]
\[
= (b - a) \int_0^{\frac{\pi}{2}} \tan \theta \sin(2\theta) \, d\theta
\]
\[
= (b - a) \cdot 2 \int_0^{\frac{\pi}{2}} \sin^2 \theta \, d\theta
\]
Using the known result:
\[
= (b - a) \cdot 2 \cdot \frac{\pi}{4} = \frac{\pi}{2} (b - a)
\]
**Conclusion for (iii):**
\[
I_3 = \frac{\pi}{2} (b - a) \quad \text{(matches with solution (c))}
\]
### Final Matching
- (i) \( \int_a^b \frac{1}{\sqrt{(x - a)(b - x)}} \, dx \) matches with (b) \( \pi \)
- (ii) \( \int_a^b \sqrt{(x - a)(b - x)} \, dx \) matches with (a) \( \frac{\pi}{8} (b - a)^2 \)
- (iii) \( \int_a^b \sqrt{\frac{x - a}{b - x}} \, dx \) matches with (c) \( \frac{\pi}{2} (b - a) \)