Home
Class 12
MATHS
If int(log (x + sqrt(1 + x^2)))/(sqrt(1 ...

If `int(log (x + sqrt(1 + x^2)))/(sqrt(1 + x^2)) dx = (fog) x +c` then , the function f and g are respectively

A

`log sqrt(1 + x^2) + x`

B

`log (x + sqrt(1 + x^2)) x^2`

C

`(x^2)/2 ,"log" (x + sqrt(1 + x^2))`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral equation: \[ \int \frac{\log(x + \sqrt{1 + x^2})}{\sqrt{1 + x^2}} \, dx = f(g(x)) + c \] we will follow these steps: ### Step 1: Substitution Let: \[ t = x + \sqrt{1 + x^2} \] ### Step 2: Differentiate to find \(dx\) To find \(dx\), we differentiate \(t\): \[ dt = \left(1 + \frac{x}{\sqrt{1 + x^2}}\right) dx \] This simplifies to: \[ dt = \frac{\sqrt{1 + x^2} + x}{\sqrt{1 + x^2}} \, dx \] Thus, we have: \[ dx = \frac{\sqrt{1 + x^2}}{\sqrt{1 + x^2} + x} \, dt \] ### Step 3: Rewrite the integral Now substitute \(t\) and \(dx\) into the integral: \[ \int \frac{\log(t)}{\sqrt{1 + x^2}} \cdot \frac{\sqrt{1 + x^2}}{\sqrt{1 + x^2} + x} \, dt \] This simplifies to: \[ \int \frac{\log(t)}{t} \, dt \] ### Step 4: Integrate The integral of \(\frac{\log(t)}{t}\) is: \[ \frac{(\log(t))^2}{2} + C \] ### Step 5: Substitute back for \(t\) Now we substitute back \(t = x + \sqrt{1 + x^2}\): \[ \frac{(\log(x + \sqrt{1 + x^2}))^2}{2} + C \] ### Step 6: Identify \(f\) and \(g\) From the expression: \[ f(g(x)) = \frac{(\log(x + \sqrt{1 + x^2}))^2}{2} \] We can identify: - \(g(x) = x + \sqrt{1 + x^2}\) - \(f(x) = \frac{x^2}{2}\) ### Final Answer Thus, the functions \(f\) and \(g\) are: - \(f(x) = \frac{x^2}{2}\) - \(g(x) = x + \sqrt{1 + x^2}\)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int x((ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx

int x(ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx equals

Knowledge Check

  • If int(log"("x+sqrt(1+x^(2))")")/(sqrt(1+x^(2)))dx="gof"(x)+"constant, then"

    A
    `f(x)=log(x+sqrt(x^(2)+1))`
    B
    `f(x)=log(x+sqrt(x^(2)+1))" and "g(x)=x^(2)`
    C
    `f(x)=log(x+sqrt(x^(2)+1))" and "g(x)=(x^(2))/(2)`
    D
    `f(x)=(x^(2))/(2)" and "g(x)=log(x+sqrt(x^(2)+1))`
  • int_(1)^(2)(1)/(x sqrt(log x))dx =

    A
    `sqrt(log 2)`
    B
    2
    C
    `2sqrt(log 2)`
    D
    0
  • If int(1)/(sqrt(2ax-x^(2)))dx= fog (x)+C , then

    A
    `f(x)=sin^(-1)x, and g (x) = (x+a)/(a)`
    B
    `f(x)=sin^(-1) x ,and g (x) = (x-a)/(a)`
    C
    `f(x)=cos^(-1)x , and g (x) = (x-a)/(a)`
    D
    `f(x) =tan^(-1)x and g (x)=(x-a)/(a)`
  • Similar Questions

    Explore conceptually related problems

    int(sqrt(1+(log x)^(2)))/(x)dx

    the value of int x*(ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx

    int_-1^1 log(x+sqrt(x^2+1))dx

    int_(1)^(e^(2))(ln x)/(sqrt(x))dx=

    If int(sqrt(x)dx)/(sqrt(1-x^(3))) = (2)/(3) log (x) + C then :