Home
Class 12
MATHS
For integration of (x + sqrt(1 + x^2))^n...

For integration of `(x + sqrt(1 + x^2))^n` use the subtitution `x = tan theta.` Also note that
`(sec theta + tan theta) (sec theta - tan theta) = 1`
Evaluate the following :
`int_0^(oo) (dx)/([x + sqrt(1 + x^2)]^n)`, where n is an integer `gt 1`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_0^{\infty} \frac{dx}{(x + \sqrt{1 + x^2})^n} \] where \( n > 1 \) is an integer, we will use the substitution \( x = \tan \theta \). ### Step 1: Change of Variables Using the substitution \( x = \tan \theta \), we have: \[ dx = \sec^2 \theta \, d\theta \] The limits change as follows: - When \( x = 0 \), \( \theta = 0 \). - When \( x \to \infty \), \( \theta \to \frac{\pi}{2} \). Thus, the integral becomes: \[ I = \int_0^{\frac{\pi}{2}} \frac{\sec^2 \theta \, d\theta}{(\tan \theta + \sqrt{1 + \tan^2 \theta})^n} \] ### Step 2: Simplifying the Integrand Using the identity \( \sqrt{1 + \tan^2 \theta} = \sec \theta \), we can rewrite the integrand: \[ I = \int_0^{\frac{\pi}{2}} \frac{\sec^2 \theta \, d\theta}{(\tan \theta + \sec \theta)^n} \] ### Step 3: Further Simplification We can express \( \tan \theta + \sec \theta \) in a more manageable form. Let: \[ z = \tan \theta + \sec \theta \] Then, we differentiate: \[ dz = (\sec^2 \theta + \sec \theta \tan \theta) d\theta \] This means: \[ d\theta = \frac{dz}{\sec^2 \theta + \sec \theta \tan \theta} \] ### Step 4: Expressing in Terms of \( z \) Now, we need to express \( \sec^2 \theta \) in terms of \( z \). From the identity \( \sec^2 \theta - \tan^2 \theta = 1 \), we can derive: \[ \sec^2 \theta = z^2 - 1 \] Thus, substituting back into the integral, we have: \[ I = \int_1^{\infty} \frac{(z^2 - 1) \, dz}{z^n} \] ### Step 5: Splitting the Integral Now we split the integral: \[ I = \int_1^{\infty} (z^{2-n} - z^{-n}) \, dz \] ### Step 6: Evaluating the Integrals Now we evaluate each integral separately: 1. For \( \int_1^{\infty} z^{2-n} \, dz \): \[ \int_1^{\infty} z^{2-n} \, dz = \left[ \frac{z^{3-n}}{3-n} \right]_1^{\infty} \] This converges if \( n > 1 \) (which it does), giving: \[ = \frac{1}{n-3} \quad \text{(for } n < 3\text{)} \] 2. For \( \int_1^{\infty} z^{-n} \, dz \): \[ \int_1^{\infty} z^{-n} \, dz = \left[ \frac{z^{1-n}}{1-n} \right]_1^{\infty} \] This converges if \( n > 1 \), giving: \[ = \frac{1}{n-1} \] ### Step 7: Combining Results Thus, we have: \[ I = \frac{1}{3-n} - \frac{1}{n-1} \] ### Final Result Combining these results gives us: \[ I = \frac{1}{1 - n} - \frac{1}{3 - n} \] This simplifies to: \[ I = \frac{2}{(n-1)(3-n)} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

(1+sec theta-tan theta)/(1+sec theta+tan theta)=

Prove that: 1/(sec theta - tan theta) = sec theta + tan theta .

Prove that (1)/(sec theta - tan theta) = sec theta + tan theta

prove that (sec theta-tan theta-1)/(sec theta+tan theta-1)=tan theta-sec theta

If sec theta+tan theta=x then sec theta=

(tan theta+sec theta-1)/(tan theta-sec theta+1)

(tan theta)/(sec theta+1)+(sec theta+1)/(tan theta)=2cos ec theta

If tan theta + sec theta = n, then sec ^(4) theta - tan ^(4) theta- 2 sec theta tan theta =