Home
Class 12
MATHS
int(1)/(sqrt(1-e^(2x)))dx...

`int(1)/(sqrt(1-e^(2x)))dx`

A

`x-log[1+sqrt(1-e^(2x))]+c`

B

`x+log[1+sqrt(1-e^(2x))]+c`

C

`log[1+sqrt(1-e^(2x))]-x+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sqrt{1 - e^{2x}}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{\sqrt{1 - e^{2x}}} \, dx \] ### Step 2: Substitute \( e^x \) Let \( t = e^x \). Then, \( dt = e^x \, dx \) or \( dx = \frac{dt}{t} \). The integral becomes: \[ I = \int \frac{1}{\sqrt{1 - t^2}} \cdot \frac{dt}{t} \] ### Step 3: Rewrite the Integral This can be rewritten as: \[ I = \int \frac{1}{t \sqrt{1 - t^2}} \, dt \] ### Step 4: Use Trigonometric Substitution We can use the substitution \( t = \sin(\theta) \), which gives \( dt = \cos(\theta) \, d\theta \). The integral becomes: \[ I = \int \frac{1}{\sin(\theta) \sqrt{1 - \sin^2(\theta)}} \cos(\theta) \, d\theta \] Since \( \sqrt{1 - \sin^2(\theta)} = \cos(\theta) \), we have: \[ I = \int \frac{1}{\sin(\theta)} \, d\theta \] ### Step 5: Integrate The integral of \( \frac{1}{\sin(\theta)} \) is: \[ I = \ln |\tan(\frac{\theta}{2})| + C \] ### Step 6: Back Substitute Now we need to back substitute \( \theta \) in terms of \( t \) and \( x \): Since \( t = \sin(\theta) \), we have \( \theta = \arcsin(t) = \arcsin(e^x) \). Thus: \[ I = \ln |\tan(\frac{1}{2} \arcsin(e^x))| + C \] ### Step 7: Final Expression We can express this in terms of \( e^x \) and simplify further if necessary, but this is the general form of the solution. ### Summary of the Solution The integral evaluates to: \[ I = \ln |\tan(\frac{1}{2} \arcsin(e^x))| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(1-e^(x)))

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int(dx)/(sqrt(1-e^(2x)))=?

int(dx)/(sqrt(e^(x)-1))

Evaluate int(e^(x))/(sqrt(1-e^(2x)))dx

int(dx)/(sqrt(1-e^(2x))) is equal to

Evaluate: (i) int5^(x)+tan(-1)x((x^(2)+2)/(x^(2)+1))dx (ii) int(e^(m)sin(-1)x)/(sqrt(1-x^(2)))dx

int(x)/(sqrt(1-2x))dx

int(x)/(sqrt(1-2x))dx

int(dx)/(sqrt(e^(2x)-1))=