Home
Class 12
MATHS
If int f(x) dx = g(x) , then intx^(5)f(x...

If `int f(x) dx = g(x)` , then `intx^(5)f(x^3)` dx is equal to

A

`1/3[x^3g(x^3)-intx^2g(x^3)dx]+c`

B

`1/3x^3g(x^3)-3intx^2g(x^3)dx+c`

C

`1/3x^3g(x^3)-intx^2g(x^3)dx+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^5 f(x^3) \, dx \) given that \( \int f(x) \, dx = g(x) \), we will use integration by parts and substitution. Here’s the step-by-step solution: ### Step 1: Set Up the Integral We start with the integral: \[ I = \int x^5 f(x^3) \, dx \] ### Step 2: Substitution Let’s use the substitution \( t = x^3 \). Then, we differentiate: \[ dt = 3x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3x^2} \] Also, since \( t = x^3 \), we have \( x = t^{1/3} \) and \( x^2 = (t^{1/3})^2 = t^{2/3} \). ### Step 3: Rewrite the Integral Now, substitute \( x^5 \) and \( dx \) into the integral: \[ I = \int (t^{1/3})^5 f(t) \cdot \frac{dt}{3t^{2/3}} = \int \frac{t^{5/3} f(t)}{3t^{2/3}} \, dt \] This simplifies to: \[ I = \frac{1}{3} \int t^{5/3 - 2/3} f(t) \, dt = \frac{1}{3} \int t^{1} f(t) \, dt \] ### Step 4: Integration by Parts Now we apply integration by parts, where we let: - \( u = t \) and \( dv = f(t) \, dt \) - Then, \( du = dt \) and \( v = g(t) \) (since \( \int f(t) \, dt = g(t) \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I = \frac{1}{3} \left( t g(t) - \int g(t) \, dt \right) \] ### Step 5: Substitute Back Now substitute back \( t = x^3 \): \[ I = \frac{1}{3} \left( x^3 g(x^3) - \int g(x^3) \, dx \right) \] ### Step 6: Final Expression Thus, the final expression for the integral \( \int x^5 f(x^3) \, dx \) is: \[ I = \frac{1}{3} \left( x^3 g(x^3) - \int g(x^3) \, dx \right) + C \] where \( C \) is the constant of integration. ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

If int f(x)dx=psi(x), then int x^(5)f(x^(3))dx

If int f(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to:

If intf(x)dx=g(x),then intx^(11)f(x^(6))dx is equal to

if int g(x)dx=g(x), then int g(x){f(x)+f'(x)}dx is equal to

If int f(x)dx=g(x) then int f^(-1)(x)dx is