Home
Class 12
MATHS
Let f(0) = 1, f(1) = 2.72, then the trap...

Let `f(0) = 1, f(1) = 2.72`, then the trapezoidal rule gives approximate value of so `int_0^1 f(x) dx `

A

`3.72 `

B

`1.86 `

C

`1.72 `

D

`0.86 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem using the trapezoidal rule, we will follow these steps: ### Step 1: Identify the function values and the interval We are given: - \( f(0) = 1 \) - \( f(1) = 2.72 \) We need to approximate the integral \( \int_0^1 f(x) \, dx \). ### Step 2: Apply the trapezoidal rule formula The trapezoidal rule states that: \[ \int_a^b f(x) \, dx \approx \frac{(b - a)}{2} \left( f(a) + f(b) \right) \] In our case, \( a = 0 \) and \( b = 1 \). ### Step 3: Calculate \( b - a \) \[ b - a = 1 - 0 = 1 \] ### Step 4: Substitute values into the trapezoidal rule formula Now we substitute \( a \), \( b \), \( f(0) \), and \( f(1) \) into the formula: \[ \int_0^1 f(x) \, dx \approx \frac{1}{2} \left( f(0) + f(1) \right) \] \[ = \frac{1}{2} \left( 1 + 2.72 \right) \] ### Step 5: Calculate \( f(0) + f(1) \) \[ f(0) + f(1) = 1 + 2.72 = 3.72 \] ### Step 6: Calculate the final approximation Now we can find the approximate value of the integral: \[ \int_0^1 f(x) \, dx \approx \frac{1}{2} \times 3.72 = 1.86 \] ### Final Answer Thus, the approximate value of \( \int_0^1 f(x) \, dx \) using the trapezoidal rule is **1.86**. ---
Promotional Banner

Topper's Solved these Questions

  • NUMERICAL METHODS

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos
  • MEASURES OF CENTRAL TENDENCY

    ML KHANNA|Exercise ASSERTION / REASON|1 Videos
  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos

Similar Questions

Explore conceptually related problems

If f(0)=1 , f(2)=3 , f'(2)=5 , then the value of the definite integral int_0^(1)xf''(2x)dx is _________

If int_(-1)^(1)f(x)dx=0 then

Let f(x) be a differentiable function in the interval (0,2) , then the value of int_0^2 f(x) dx is :

If f(0)=1,f(2)=3,f'(2)=5 ,then the value of the definite integral int_(0)^(1)xf''(2x)dx is

Let f(x) be a differentiable function in the interval (0, 2) then the value of int_(0)^(2)f(x)dx

If f(x)=max{x^(2),(1-x)^(2),(3)/(4)},x in[0,1] then the value of of int_(0)^(1)f(x)dx is

if f(x)=|x-1| then int_(0)^(2)f(x)dx is