Home
Class 12
MATHS
If S = sum(n =0)^(oo) ((logx)^(2n))/((2...

If `S = sum_(n =0)^(oo) ((logx)^(2n))/((2n)!)` these S is equal to

A

`x + x^(-1)`

B

`x-x^(-1)`

C

`(x +x^(-1))/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the series \[ S = \sum_{n=0}^{\infty} \frac{(\log x)^{2n}}{(2n)!} \] ### Step 1: Recognize the Series The series resembles the Taylor series expansion for the exponential function. Specifically, the Taylor series for \( e^x \) is given by: \[ e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \] ### Step 2: Relate to the Cosine Hyperbolic Function Notice that our series only includes even powers of \( \log x \). The series for the hyperbolic cosine function \( \cosh(x) \) is: \[ \cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} \] Thus, we can rewrite our series as: \[ S = \sum_{n=0}^{\infty} \frac{(\log x)^{2n}}{(2n)!} = \cosh(\log x) \] ### Step 3: Simplify \( \cosh(\log x) \) Using the definition of the hyperbolic cosine function, we have: \[ \cosh(x) = \frac{e^x + e^{-x}}{2} \] Substituting \( x = \log x \): \[ S = \cosh(\log x) = \frac{e^{\log x} + e^{-\log x}}{2} \] ### Step 4: Simplify Further We know that \( e^{\log x} = x \) and \( e^{-\log x} = \frac{1}{x} \). Therefore: \[ S = \frac{x + \frac{1}{x}}{2} \] ### Final Result Thus, the value of \( S \) is: \[ S = \frac{x + \frac{1}{x}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE )|4 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

If S=sum_(n=0)^(oo)((log x)^(2n))/((2n)!) then S equals :

sum_(n=0)^(oo)((log_(e)x)^(n))/(n!) is equal to

sum_(n=0)^(oo) (n^(2) + n + 1)/((n +1)!) is equal to

If S=sum_(n=2)^(oo)(3n^(2)+1)/((n^(2)-1)^(3)) then (9)/(4S) is