Home
Class 12
MATHS
If A = sum(n=1)^(oo) (2n)/((2n-1)!), B =...

If `A = sum_(n=1)^(oo) (2n)/((2n-1)!), B = sum_(n=1)^(oo) (2n)/((2n+1)!)`, then AB is equal to

A

1

B

`e^(2)`

C

`(e-1)/(e+1)`

D

`(e+1)/(e-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( A \) and \( B \) and then compute the product \( AB \). ### Step 1: Calculate \( A \) We start with the expression for \( A \): \[ A = \sum_{n=1}^{\infty} \frac{2n}{(2n-1)!} \] To simplify this, we can rewrite \( 2n \) as \( (2n-1) + 1 \): \[ A = \sum_{n=1}^{\infty} \frac{(2n-1) + 1}{(2n-1)!} = \sum_{n=1}^{\infty} \frac{2n-1}{(2n-1)!} + \sum_{n=1}^{\infty} \frac{1}{(2n-1)!} \] The first term simplifies as follows: \[ \sum_{n=1}^{\infty} \frac{2n-1}{(2n-1)!} = \sum_{n=1}^{\infty} \frac{1}{(2n-2)!} \] This can be rewritten by changing the index: \[ \sum_{m=0}^{\infty} \frac{1}{(2m)!} = \cosh(1) \] The second term is: \[ \sum_{n=1}^{\infty} \frac{1}{(2n-1)!} = \sinh(1) \] Thus, we have: \[ A = \cosh(1) + \sinh(1) = e \] ### Step 2: Calculate \( B \) Now, we compute \( B \): \[ B = \sum_{n=1}^{\infty} \frac{2n}{(2n+1)!} \] Using a similar approach, we can rewrite \( 2n \) in terms of \( (2n+1) \): \[ B = \sum_{n=1}^{\infty} \frac{(2n+1) - 1}{(2n+1)!} = \sum_{n=1}^{\infty} \frac{2n+1}{(2n+1)!} - \sum_{n=1}^{\infty} \frac{1}{(2n+1)!} \] The first term simplifies as follows: \[ \sum_{n=1}^{\infty} \frac{2n+1}{(2n+1)!} = \sum_{n=1}^{\infty} \frac{1}{(2n)!} \] This can be rewritten by changing the index: \[ \sum_{m=0}^{\infty} \frac{1}{(2m)!} = \cosh(1) \] The second term is: \[ \sum_{n=1}^{\infty} \frac{1}{(2n+1)!} = \sinh(1) - 1 \] Thus, we have: \[ B = \cosh(1) - (\sinh(1) - 1) = e^{-1} \] ### Step 3: Calculate \( AB \) Now we can find \( AB \): \[ AB = A \cdot B = e \cdot e^{-1} = 1 \] ### Final Answer Thus, the product \( AB \) is equal to \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE )|4 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

sum_(n=1)^oo (n^2+6n+10)/((2n+1)!)

sum_(n=0)^(oo) (n^(2) + n + 1)/((n +1)!) is equal to

The value of sum_(n=1)^(oo)(1)/(2n(2n+1)) is equal to

sum_(n=1)^(oo)tan^(-1)((8)/(4n^(2)-4n+1)) is equal to

sum_(0)^(oo)(1)/((3n+1)(3n+2))

sum_(n=1)^(oo)(n^(2))/(n!) is equal to