Home
Class 12
MATHS
(1)/(2!) + (1+2)/(3!) + (1+2+3)/(4!) + (...

`(1)/(2!) + (1+2)/(3!) + (1+2+3)/(4!) + (1+2+3+4)/(5!) +.... = `

A

`e//3`

B

`e//4`

C

`e//2`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series \[ S = \frac{1}{2!} + \frac{1+2}{3!} + \frac{1+2+3}{4!} + \frac{1+2+3+4}{5!} + \ldots \] we will first identify the general term of the series. ### Step 1: Identify the nth term The nth term can be expressed as: \[ T_n = \frac{1 + 2 + 3 + \ldots + n}{(n+1)!} \] The sum of the first n natural numbers is given by the formula: \[ 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \] Thus, we can rewrite \(T_n\): \[ T_n = \frac{\frac{n(n+1)}{2}}{(n+1)!} \] ### Step 2: Simplify the nth term Now, simplifying \(T_n\): \[ T_n = \frac{n(n+1)}{2(n+1)!} = \frac{n}{2 \cdot n!} \] ### Step 3: Write the series in summation form Now, we can express the entire series \(S\) as: \[ S = \sum_{n=1}^{\infty} T_n = \sum_{n=1}^{\infty} \frac{n}{2 \cdot n!} \] ### Step 4: Factor out the constant Factoring out the constant \(\frac{1}{2}\): \[ S = \frac{1}{2} \sum_{n=1}^{\infty} \frac{n}{n!} \] ### Step 5: Simplify the summation We know that: \[ \frac{n}{n!} = \frac{1}{(n-1)!} \] Thus, we can rewrite the summation: \[ S = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{(n-1)!} \] ### Step 6: Change the index of summation Let \(m = n - 1\), then as \(n\) goes from \(1\) to \(\infty\), \(m\) goes from \(0\) to \(\infty\): \[ S = \frac{1}{2} \sum_{m=0}^{\infty} \frac{1}{m!} \] ### Step 7: Recognize the series The series \(\sum_{m=0}^{\infty} \frac{1}{m!}\) is the Taylor series expansion for \(e^x\) at \(x=1\): \[ \sum_{m=0}^{\infty} \frac{1}{m!} = e \] ### Step 8: Final result Thus, substituting back, we find: \[ S = \frac{1}{2} e \] The final answer is: \[ S = \frac{e}{2} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE )|4 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

4(1)/(3) - 3 (2)/3 -:1(1)/(3) + ? -: 3 (1)/(2) -: 1(1)/(5) =7

(1) / (1.2) + (1.3) / (1.2.3.4) + (1.3.5) / (1.2.3.4.5.6) + .... oo

The value of 4(2)/(5) div { (1(1)/(2)-3(1)/(5)) 3(2)/(5) +(2(1)/(5) div 1(1)/(2) + 4(2)/(5)) +(1)/(2)} is :

1+ (1) / (2) (. 3) / (5) (1.3) / (2.4) ((3) / (5)) ^ (2) + (1.3.5) / (2.4.6) ( (3) / (5)) ^ (3) + ........ oo =