Home
Class 12
MATHS
The sum of the series sum(n=0)^(oo) (n^(...

The sum of the series `sum_(n=0)^(oo) (n^(2) - n +1)/(n!)` is

A

e

B

`(3)/(2)e`

C

2e

D

3e

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \[ S = \sum_{n=0}^{\infty} \frac{n^2 - n + 1}{n!}, \] we can break this series into three separate sums: \[ S = \sum_{n=0}^{\infty} \frac{n^2}{n!} - \sum_{n=0}^{\infty} \frac{n}{n!} + \sum_{n=0}^{\infty} \frac{1}{n!}. \] ### Step 1: Evaluate \(\sum_{n=0}^{\infty} \frac{1}{n!}\) This is the Taylor series expansion for \(e^x\) at \(x = 1\): \[ \sum_{n=0}^{\infty} \frac{1}{n!} = e. \] ### Step 2: Evaluate \(\sum_{n=0}^{\infty} \frac{n}{n!}\) We can rewrite \(\frac{n}{n!}\) as \(\frac{1}{(n-1)!}\) for \(n \geq 1\): \[ \sum_{n=0}^{\infty} \frac{n}{n!} = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} = \sum_{m=0}^{\infty} \frac{1}{m!} = e, \] where we let \(m = n - 1\). ### Step 3: Evaluate \(\sum_{n=0}^{\infty} \frac{n^2}{n!}\) We can use the identity \(n^2 = n(n-1) + n\): \[ \sum_{n=0}^{\infty} \frac{n^2}{n!} = \sum_{n=0}^{\infty} \frac{n(n-1)}{n!} + \sum_{n=0}^{\infty} \frac{n}{n!}. \] The first term can be rewritten as: \[ \sum_{n=2}^{\infty} \frac{1}{(n-2)!} = \sum_{m=0}^{\infty} \frac{1}{m!} = e, \] where we let \(m = n - 2\). Thus, we have: \[ \sum_{n=0}^{\infty} \frac{n^2}{n!} = e + e = 2e. \] ### Step 4: Combine all parts Now we can combine all the parts: \[ S = \sum_{n=0}^{\infty} \frac{n^2}{n!} - \sum_{n=0}^{\infty} \frac{n}{n!} + \sum_{n=0}^{\infty} \frac{1}{n!} = 2e - e + e = 2e. \] Thus, the sum of the series is \[ \boxed{2e}. \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE )|4 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

sum_(n=0)^(oo) (n^(2) + n + 1)/((n +1)!) is equal to

The sum of the series sum_(n=1)^oo(n^2+6n+10)/((2n+1)!) is equal to

The sum of the series Sigma_(oo)^(n=0) (n^(2)-n+1)/(n!) is

The sum of the series sum _(n=1) ^(oo) sin ((n!pi)/(720)) is

sum_(n=1)^(oo)(n^(2))/(n!) is equal to

The sum of the series sum_(r=0) ^(n) ""^(2n)C_(r), is

If the sum of the series sum_(n=0)^(oo)r^(n),|r|<1 is s then find the sum of the series sum_(n=0)^(oo)r^(2n)

sum_(n=1)^(oo) ((Inx)^(n))/(n!) is equal to