Home
Class 12
MATHS
If S(n) = (1^(2).2)/(1!) + (2^(2).3)/(2!...

If `S_(n) = (1^(2).2)/(1!) + (2^(2).3)/(2!) + (3^(2).4)/(3!) + ... + (n^(2)(n+1))/(n!)`, then `lim_(n to oo) sum S_(n)` is equal to

A

3e

B

5e

C

7e

D

9e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit of the sum \( S_n \) as \( n \) approaches infinity, where \[ S_n = \frac{1^2 \cdot 2}{1!} + \frac{2^2 \cdot 3}{2!} + \frac{3^2 \cdot 4}{3!} + \ldots + \frac{n^2 \cdot (n+1)}{n!}. \] ### Step 1: Rewrite the expression for \( S_n \) We can express \( S_n \) in a more manageable form: \[ S_n = \sum_{k=1}^{n} \frac{k^2 (k+1)}{k!} = \sum_{k=1}^{n} \left( \frac{k^3}{k!} + \frac{k^2}{k!} \right). \] ### Step 2: Separate the sums Now, we can separate the sums: \[ S_n = \sum_{k=1}^{n} \frac{k^3}{k!} + \sum_{k=1}^{n} \frac{k^2}{k!}. \] ### Step 3: Evaluate the first sum To evaluate \( \sum_{k=1}^{\infty} \frac{k^3}{k!} \), we can use the known result that: \[ \sum_{k=0}^{\infty} \frac{k^m}{k!} = e \quad \text{for } m = 0, 1, 2, \ldots \] Specifically, we can derive that: \[ \sum_{k=0}^{\infty} \frac{k^3}{k!} = e \cdot (1 + 1 + 1) = 3e. \] ### Step 4: Evaluate the second sum For the second sum, we similarly know: \[ \sum_{k=0}^{\infty} \frac{k^2}{k!} = e \cdot (1 + 1) = 2e. \] ### Step 5: Combine the results Now we can combine the results of both sums: \[ \sum_{k=1}^{\infty} \frac{k^3}{k!} + \sum_{k=1}^{\infty} \frac{k^2}{k!} = 3e + 2e = 5e. \] ### Step 6: Take the limit Thus, we find that: \[ \lim_{n \to \infty} S_n = 5e. \] ### Final Answer The limit is: \[ \lim_{n \to \infty} \sum S_n = 5e. \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE )|4 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

If U_(n)=(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))^(2).............(1+(n^(2))/(n^(2)))^(n) m then lim_(n to oo)(U_(n))^((-4)/(n^(2))) is equal to

lim_(n rarr oo)[(1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(3))+...+(n^(2))/(n^(3))]=?

If quad S_(n)=(1)/(2n)+(1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-4))+...+(1)/(sqrt(3n_(2)^(2)+2n-1)),n in N then lim_(n rarr oo)S_(n) is equal to (pi)/(2)(b)2(c)1(d)(pi)/(6),n in N

a_ (n) = (1+ (1) / (n ^ (2))) (1+ (2 ^ (2)) / (n ^ (2))) ^ (2) (1+ (3 ^ ( 2)) / (n ^ (2))) ^ (3) ......... (1+ (n ^ (2)) / (n ^ (2))) ^ (n) then lim_ (n rarr oo) a_ (n) ^ (- (1) / (n ^ (2))) is equal to

Let U_(n)=(n!)/((n+2)!) where n in N. If S_(n)=sum_(n=1)^(n)U_(n), then lim_(n rarr oo)S_(n), equals

Let S_(n)=(n)/((n+1)(n+2))+(n)/((n+2)(n+4))+(n)/((n+3)(n+6))+............+(1)/(6n) then lim_(n rarr oo)S_(n) has the value equal to

let =(1)/(n*(n+1))+(1)/((n+1)*(n+2))+(1)/((n+2)(n+3))+... terms then lim_(n rarr oo)S_(n) is equal to

lim_ (n rarr oo) (1) / (2) tan ((x) / (2)) + (1) / (2 ^ (2)) tan ((x) / (2 ^ (2))). ... + (1) / (2 ^ (n)) tan ((x) / (2 ^ (n))) is equal to lim_ (n rarr oo) sum_ (n = 1) ^ (n) (1 ) / (2 ^ (n)) tan ((x) / (2 ^ (n)))