Home
Class 12
MATHS
(1+(2^(2))/(2!) + (2^(4))/(3!) +(2^(6))/...

`(1+(2^(2))/(2!) + (2^(4))/(3!) +(2^(6))/(4!)+...)/(1+(1)/(2!)+(2)/(3!)+(2^(2))/(4!)+...)`

A

`e^(2) + 1`

B

`e^(2)-1`

C

`(e-1)//(e+1)`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \[ L = \frac{1 + \frac{2^2}{2!} + \frac{2^4}{3!} + \frac{2^6}{4!} + \ldots}{1 + \frac{1}{2!} + \frac{2}{3!} + \frac{2^2}{4!} + \ldots} \] we will analyze both the numerator and the denominator separately. ### Step 1: Analyze the Numerator The numerator can be expressed as: \[ N = 1 + \frac{2^2}{2!} + \frac{2^4}{3!} + \frac{2^6}{4!} + \ldots \] This series can be recognized as a Taylor series expansion of \( e^{x} \) where \( x = 2^2 = 4 \). To express it in terms of \( e^x \): \[ N = \sum_{n=0}^{\infty} \frac{(2^2)^n}{(n+1)!} = \sum_{n=0}^{\infty} \frac{4^n}{(n+1)!} \] This can be rewritten by changing the index of summation: \[ N = \sum_{m=1}^{\infty} \frac{4^{m-1}}{m!} = \frac{1}{4} \sum_{m=1}^{\infty} \frac{4^m}{m!} = \frac{1}{4} (e^4 - 1) \] ### Step 2: Analyze the Denominator The denominator can be expressed as: \[ D = 1 + \frac{1}{2!} + \frac{2}{3!} + \frac{2^2}{4!} + \ldots \] This series can be recognized as: \[ D = \sum_{n=0}^{\infty} \frac{2^n}{(n+1)!} \] Similar to the numerator, we can change the index of summation: \[ D = \sum_{m=1}^{\infty} \frac{2^{m-1}}{m!} = \frac{1}{2} \sum_{m=1}^{\infty} \frac{2^m}{m!} = \frac{1}{2} (e^2 - 1) \] ### Step 3: Combine the Results Now we can substitute \( N \) and \( D \) back into our expression for \( L \): \[ L = \frac{N}{D} = \frac{\frac{1}{4}(e^4 - 1)}{\frac{1}{2}(e^2 - 1)} = \frac{1}{4} \cdot \frac{2(e^4 - 1)}{(e^2 - 1)} = \frac{1}{2} \cdot \frac{e^4 - 1}{e^2 - 1} \] ### Step 4: Simplify Further Using the identity \( a^2 - b^2 = (a - b)(a + b) \): \[ e^4 - 1 = (e^2 - 1)(e^2 + 1) \] Thus, we can simplify: \[ L = \frac{1}{2} \cdot \frac{(e^2 - 1)(e^2 + 1)}{(e^2 - 1)} = \frac{1}{2}(e^2 + 1) \] ### Final Result The final result is: \[ L = \frac{1}{2}(e^2 + 1) \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE )|4 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

The series expansion of log_(e) [(1 + x^((1 + x))(1-x)^(1-x)] is (1) 2[(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...] (2) [(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...] (3) 2[(x^(2))/(1.2) + (x^(4))/(2.3)+(x^(6))/(3.4)+...] (4) 2[(x^(2))/(1.2) -(x^(4))/(2.3)+(x^(6))/(3.4)-...]

(1+1/(2!)+2/(3!)+(2^(2))/(4!)+(2^(2))/(5!)+...)/(1 + 1/(2!)+1/(4!)+1/(6!)+...) is equal to

1+((1)/(2)+(1)/(3))/((1)/(3)-(1)/(6))/2-((4)/(5)of(5)/(6))/((2)/(3))

Simplify ((3(2)/(3))^(2)-(2 (1)/(2)))/((4(3)/(4))^(2)-(3(1)/(3))^(2))+(3(2)/(3)-2(1)/(2))/(4(3)/(4)-3(1)/(3))

The sum of series (601)/(50)((1)/(1+1^(2)+1^(4))+(2)/(1+2^(2)+2^(4))+(3)/(1+3^(2)+3^(4))+...+(24)/(1+(24)^(2)+(24)^(4)))