Home
Class 12
MATHS
1 + ((log n)^(2))/(2!) + ((log n)^(4))/(...

`1 + ((log n)^(2))/(2!) + ((log n)^(4))/(4!) + ...oo=`

A

n

B

`(1)/(n)`

C

`(1)/(2)(n + (1)/(n))`

D

`(1)/(2) (e^(n) + e^(-n))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series \( S = 1 + \frac{(\log n)^2}{2!} + \frac{(\log n)^4}{4!} + \ldots \), we can recognize that this series resembles the expansion of the hyperbolic cosine function. ### Step 1: Recognize the series The series can be rewritten as: \[ S = \sum_{k=0}^{\infty} \frac{(\log n)^{2k}}{(2k)!} \] This is the Taylor series expansion for \( \cosh(x) \), where \( x = \log n \). ### Step 2: Use the hyperbolic cosine function The hyperbolic cosine function is defined as: \[ \cosh(x) = \frac{e^x + e^{-x}}{2} \] Thus, substituting \( x = \log n \): \[ S = \cosh(\log n) \] ### Step 3: Simplify using properties of logarithms and exponentials Using the property of hyperbolic cosine: \[ \cosh(\log n) = \frac{e^{\log n} + e^{-\log n}}{2} \] Since \( e^{\log n} = n \) and \( e^{-\log n} = \frac{1}{n} \), we can substitute these values: \[ S = \frac{n + \frac{1}{n}}{2} \] ### Step 4: Final expression Thus, we can write: \[ S = \frac{n + \frac{1}{n}}{2} \] ### Conclusion The final value of the given series is: \[ \boxed{\frac{n + \frac{1}{n}}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE )|4 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

1+((log_(e)n)^(2))/(2!)+((log_(e)n)^(4))/(4!)+...=

If a != 1 and l n a^(2) + (l n a^(2))^(2) + (l n a^(2))^(3) + ... = 3 (l n a + (l n a)^(2) + ( ln a)^(3) + (l n a)^(4) + ....) then 'a' is equal to

The sum of the series: (1)/(log_(2)4)+(1)/(log_(4)4)+(1)/(log_(8)4)+...+(1)/(log_(2n)4) is (n(n+1))/(2) (b) (n(n+1)(2n+1))/(12) (c) (n(n+1))/(4) (d) none of these

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

The value of (1)/(log_(3)n)+(1)/(log_(4)n) + (1)/(log_(5)n) + ... + (1)/(log_(8)n) is ______.

If n=(2017)! , then what is (1)/(log_(2)n)+(1)/(log_(3)n)+(1)/(log_(4)n)+....+(1)/(log_(2017)n) equal to?