Home
Class 12
MATHS
If S = sum(n=2)^(oo) ""^(n)C(2) (3^(n-...

If ` S = sum_(n=2)^(oo) ""^(n)C_(2) (3^(n-2))/(n!),` then 2S equals

A

`e^(3//2)`

B

`e^(3)`

C

`e^(-3//2)`

D

`e^(-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum \( S = \sum_{n=2}^{\infty} \binom{n}{2} \frac{3^{n-2}}{n!} \) and then find \( 2S \). ### Step-by-Step Solution: 1. **Rewrite the Binomial Coefficient**: The binomial coefficient \( \binom{n}{2} \) can be expressed as: \[ \binom{n}{2} = \frac{n(n-1)}{2} \] Therefore, we can rewrite \( S \): \[ S = \sum_{n=2}^{\infty} \frac{n(n-1)}{2} \frac{3^{n-2}}{n!} \] 2. **Factor Out the Constant**: Since \( \frac{1}{2} \) is a constant, we can factor it out of the summation: \[ S = \frac{1}{2} \sum_{n=2}^{\infty} \frac{n(n-1) 3^{n-2}}{n!} \] 3. **Change the Index of Summation**: To simplify the summation, we can change the index of summation by letting \( m = n - 2 \). Then \( n = m + 2 \) and when \( n = 2 \), \( m = 0 \): \[ S = \frac{1}{2} \sum_{m=0}^{\infty} \frac{(m+2)(m+1) 3^{m}}{(m+2)!} \] 4. **Simplify the Factorial**: We can express \( (m+2)! \) as \( (m+2)(m+1)m! \): \[ S = \frac{1}{2} \sum_{m=0}^{\infty} \frac{3^{m}}{m!} \] 5. **Recognize the Exponential Series**: The series \( \sum_{m=0}^{\infty} \frac{3^{m}}{m!} \) is the Taylor series expansion for \( e^x \) evaluated at \( x = 3 \): \[ \sum_{m=0}^{\infty} \frac{3^{m}}{m!} = e^3 \] 6. **Substitute Back**: Therefore, we have: \[ S = \frac{1}{2} e^3 \] 7. **Calculate \( 2S \)**: Finally, we calculate \( 2S \): \[ 2S = 2 \cdot \frac{1}{2} e^3 = e^3 \] ### Final Answer: \[ 2S = e^3 \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE )|4 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

The sum of sum_(n=1)^(oo) ""^(n)C_(2) . (3^(n-2))/(n!) equal

If S=sum_(n=0)^(oo)((log x)^(2n))/((2n)!) then S equals :

If S=sum_(n=2)^(oo)(3n^(2)+1)/((n^(2)-1)^(3)) then (9)/(4S) is

The value of sum_(n=1)^(oo)(4n-2)/(3^(n))