Home
Class 12
MATHS
If e^(x) = {t + sqrt(1+t^(2))} then the ...

If `e^(x) = {t + sqrt(1+t^(2))}` then the value of t is

A

`(1)/(2)(e^(x) + e^(-x))`

B

`(1)/(2)(e^(x)-e^(-x))`

C

`(e^(x)+e^(-x))`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( t \) given the equation \( e^x = t + \sqrt{1 + t^2} \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ e^x = t + \sqrt{1 + t^2} \] ### Step 2: Isolate the square root We can isolate the square root by rearranging the equation: \[ \sqrt{1 + t^2} = e^x - t \] ### Step 3: Square both sides Next, we square both sides to eliminate the square root: \[ 1 + t^2 = (e^x - t)^2 \] ### Step 4: Expand the right-hand side Expanding the right-hand side gives: \[ 1 + t^2 = e^{2x} - 2te^x + t^2 \] ### Step 5: Simplify the equation Now, we can simplify the equation by subtracting \( t^2 \) from both sides: \[ 1 = e^{2x} - 2te^x \] ### Step 6: Rearrange to solve for \( t \) Rearranging gives us: \[ 2te^x = e^{2x} - 1 \] \[ t = \frac{e^{2x} - 1}{2e^x} \] ### Step 7: Simplify the expression for \( t \) We can simplify this expression: \[ t = \frac{(e^x - 1)(e^x + 1)}{2e^x} = \frac{e^x - 1}{2} + \frac{e^x + 1}{2} \] ### Step 8: Recognize the hyperbolic sine function This expression can be recognized as: \[ t = \sinh(x) \] since \( \sinh(x) = \frac{e^x - e^{-x}}{2} \). ### Conclusion Thus, we conclude that: \[ t = \sinh(x) = \frac{e^x - e^{-x}}{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE )|4 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

If sin x=(2t)/(1+t^(2)) and cot y=(1-t^(2))/(2t) then the value of (d^(2)x)/(dy^(2))=

If displacement x at time t is x=sqrt(1+t^(2)) , then acceleration is

Knowledge Check

  • If x = 3t , y = (1)/(2) ( t + 1) , then the value of t for which x = 2y is

    A
    A)1
    B
    B)`(1)/(2)`
    C
    C)`-1`
    D
    D)`(2)/(3)`
  • If x= sqrt((1-t^2)/( 1+t^2)) and y= ( sqrt(1+t^2) - sqrt(1-t^2)) then the value of (d^2 y)/(dx^2) at t=0 is given by

    A
    0
    B
    `1//2`
    C
    1
    D
    `-1`
  • If displacement x at time t is x = sqrt(1+ t^(2)) , then acceleration is

    A
    `(1)/(x)`
    B
    `(1)/(x^(2))`
    C
    `(1)/(x^(3)`
    D
    `x^(3)`
  • Similar Questions

    Explore conceptually related problems

    For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of x + y + z is equal to

    If matrix A=[[1/sqrt(2),] [1/sqrt2],[ -1/sqrt2, 1/sqrt2]] and B, is a matrix such that B^T A=A^T and K B^T=2 A^T-sqrt(2) I . (where I is unit matrix of order 2 and K in R^l ) then the value of K^4 is

    If (15+4sqrt(14))^(t)+(15-4sqrt(14))^(t)=30 where t=x^(2)-2|x| , then the value of x= ….......

    If f(t) = 1/(t^(2)-t-6) and t = 1/(x-2) then the values of x which make the function f discontinuous are

    If x = e^(t) sin t and y = e^(t) cos t, t is a parameter , then the value of (d^(2) x)/( dy^(2)) + (d^(2) y)/(dx^(2)) at t = 0 , is :